File size: 7,634 Bytes
46f57ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import re

from rouge_score import rouge_scorer

import Levenshtein

import pandas as pd
import numpy as np

feature_assessment_entries = {

    f'brand': {
        'name': f'brand',
        'output_column': 'Brand',
        'scoring_function_name': 'grade_exact_match',
        'post_processing_function_name': 'post_processing_none',
        # 'post_processing_function_name' : 'post_processing_brand',
        'k_folds': 3,
    },

    f'product_name': {
        'name': f'product_name',
        'output_column': 'Product name',
        'scoring_function_name': 'grade_levenshtein_match',
        # 'scoring_function_name' : 'grade_exact_match',
        'post_processing_function_name': 'post_processing_none',
        'k_folds': 3,
    },

    f'ingredients': {
        'name': f'ingredients',
        'output_column': 'Ingredients',
        'scoring_function_name': 'grade_rouge_score',
        # 'scoring_function_name' : 'grade_levenshtein_match',
        'post_processing_function_name': 'post_processing_none',
        # 'post_processing_function_name' : 'post_processing_ingredients',
        'k_folds': 3,
    },

    f'energy_kj': {
        'name': f'energy_kj',
        'output_column': 'Energy kJ',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_none',
        'k_folds': 3,
    },

    f'energy_kcal': {
        'name': f'energy_kcal',
        'output_column': 'Energy kcal',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_none',
        'k_folds': 3,
    },

    f'fat': {
        'name': f'fat',
        'output_column': 'Fat',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'saturated_fat': {
        'name': f'saturated_fat',
        'output_column': 'Saturated fat',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'carbohydrates': {
        'name': f'carbohydrates',
        'output_column': 'Carbohydrates',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'sugars': {
        'name': f'sugars',
        'output_column': 'Sugars',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'fibers': {
        'name': f'fibers',
        'output_column': 'Fibers',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'proteins': {
        'name': f'proteins',
        'output_column': 'Proteins',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

    f'salt': {
        'name': f'salt',
        'output_column': 'Salt',
        'scoring_function_name': 'grade_numerical',
        'post_processing_function_name': 'post_processing_nutritionals',
        'k_folds': 3,
    },

}


def post_processing_none(string):
    return string


def post_processing_ingredients(string):
    pattern = r"<ingredients>(.*?)</ingredients>"
    # Find all matches
    matches = re.findall(pattern, string, re.DOTALL)

    if len(matches) == 0:
        output = string
    else:
        output = matches[0].strip()
        if output.lower().startswith("ingrediënten: ") or output.lower().startswith("ingredienten: "):
            output = output[len("ingrediënten: "):]
        if output.lower().startswith("ingredients: "):
            output = output[len("ingredients: "):]

    return output


def post_processing_brand(brand):
    if brand.lower() == "boni":
        brand = "Boni Selection"
    elif brand.lower() == "rana":
        brand = "Giovanni Rana"
    elif brand.lower() == "the market":
        brand = "Carrefour The Market"
    elif brand.lower() == "extra":
        brand = "Carrefour Extra"

    return brand


def post_processing_nutritionals(predicted_value):
    try:
        predicted_value = re.findall(r"[-+]?\d*\.\d+|\d+", str(predicted_value))[0]
    except:
        predicted_value = np.nan

    return predicted_value

def grade_levenshtein_match(predicted_value, reference_value):
    score = Levenshtein.ratio(predicted_value.lower().strip(), reference_value.lower().strip())
    return score


def grade_exact_match(predicted_value, reference_value):
    reference_value = reference_value.lower().strip()
    reference_value = re.sub(r'\s+', ' ', reference_value)
    predicted_value = predicted_value.lower().strip()

    score = int(predicted_value.lower().strip() == reference_value.lower().strip())

    return score


def grade_rouge_score(predicted_value, reference_value):
    scorer = rouge_scorer.RougeScorer(['rouge2'])
    score = scorer.score(predicted_value, reference_value)['rouge2'].fmeasure

    return score


def grade_numerical(predicted_value, reference_value):
    try:
        if np.isnan(float(predicted_value)) and np.isnan(float(reference_value)):
            score = 1
        else:
            score = int(float(predicted_value) == float(reference_value))
    except:
        score = -1

    return score


def create_eval_data(OUTPUT_DIR, feature_assessment_entry):

    df_product_id = pd.read_csv(f"{OUTPUT_DIR}/reference_data.csv")

    df_features = pd.read_csv(f"{OUTPUT_DIR}/{feature_assessment_entry['name']}.csv")

    df_features = df_features.merge(df_product_id, on='ID', how='left')
    df_eval_data = df_features[
        ['ID', feature_assessment_entry['output_column'], 'Extracted_Text', 'Price', 'Processing time']].copy()
    df_eval_data.rename(columns={feature_assessment_entry['output_column']: 'Reference'}, inplace=True)
    df_eval_data.rename(columns={'Extracted_Text': 'Predicted'}, inplace=True)

    df_eval_data['Predicted'] = df_eval_data.apply(
        lambda row: eval(feature_assessment_entry['post_processing_function_name'])(row['Predicted']), axis=1)

    df_eval_data['accuracy_score'] = df_eval_data.apply(
        lambda row: eval(feature_assessment_entry['scoring_function_name'])(row['Predicted'], row['Reference']), axis=1)

    df_eval_data['accuracy_score'] = round(df_eval_data['accuracy_score'], 2)

    N = len(df_eval_data)
    k = feature_assessment_entry['k_folds']
    np.random.seed(42)
    df_eval_data['fold'] = np.random.randint(0, k, size=N)

    return df_eval_data


def merge_and_save_data(OUTPUT_DIR):

    df_ref_data = pd.read_csv(f"{OUTPUT_DIR}/data_extraction/reference_data.csv")

    data_merged = [df_ref_data[['ID', 'Front photo', 'Nutritionals photo', 'Ingredients photo', 'EAN photo']]]

    for feature_name in feature_assessment_entries.keys():

        df_eval_data = create_eval_data(f'{OUTPUT_DIR}/data_extraction', feature_assessment_entries[feature_name])

        df_eval_data = df_eval_data[['Reference', 'Predicted', 'accuracy_score']]
        df_eval_data.rename(columns={'Reference': 'Reference_' + feature_name}, inplace=True)
        df_eval_data.rename(columns={'Predicted': 'Predicted_' + feature_name}, inplace=True)
        df_eval_data.rename(columns={'accuracy_score': 'accuracy_score_' + feature_name}, inplace=True)

        data_merged.append(df_eval_data)

    data_merged = pd.concat(data_merged, axis=1)

    data_merged.to_csv(f"{OUTPUT_DIR}/data_extraction/merged.csv")

    return data_merged