Spaces:
Sleeping
Sleeping
File size: 7,634 Bytes
46f57ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import re
from rouge_score import rouge_scorer
import Levenshtein
import pandas as pd
import numpy as np
feature_assessment_entries = {
f'brand': {
'name': f'brand',
'output_column': 'Brand',
'scoring_function_name': 'grade_exact_match',
'post_processing_function_name': 'post_processing_none',
# 'post_processing_function_name' : 'post_processing_brand',
'k_folds': 3,
},
f'product_name': {
'name': f'product_name',
'output_column': 'Product name',
'scoring_function_name': 'grade_levenshtein_match',
# 'scoring_function_name' : 'grade_exact_match',
'post_processing_function_name': 'post_processing_none',
'k_folds': 3,
},
f'ingredients': {
'name': f'ingredients',
'output_column': 'Ingredients',
'scoring_function_name': 'grade_rouge_score',
# 'scoring_function_name' : 'grade_levenshtein_match',
'post_processing_function_name': 'post_processing_none',
# 'post_processing_function_name' : 'post_processing_ingredients',
'k_folds': 3,
},
f'energy_kj': {
'name': f'energy_kj',
'output_column': 'Energy kJ',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_none',
'k_folds': 3,
},
f'energy_kcal': {
'name': f'energy_kcal',
'output_column': 'Energy kcal',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_none',
'k_folds': 3,
},
f'fat': {
'name': f'fat',
'output_column': 'Fat',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'saturated_fat': {
'name': f'saturated_fat',
'output_column': 'Saturated fat',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'carbohydrates': {
'name': f'carbohydrates',
'output_column': 'Carbohydrates',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'sugars': {
'name': f'sugars',
'output_column': 'Sugars',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'fibers': {
'name': f'fibers',
'output_column': 'Fibers',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'proteins': {
'name': f'proteins',
'output_column': 'Proteins',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
f'salt': {
'name': f'salt',
'output_column': 'Salt',
'scoring_function_name': 'grade_numerical',
'post_processing_function_name': 'post_processing_nutritionals',
'k_folds': 3,
},
}
def post_processing_none(string):
return string
def post_processing_ingredients(string):
pattern = r"<ingredients>(.*?)</ingredients>"
# Find all matches
matches = re.findall(pattern, string, re.DOTALL)
if len(matches) == 0:
output = string
else:
output = matches[0].strip()
if output.lower().startswith("ingrediënten: ") or output.lower().startswith("ingredienten: "):
output = output[len("ingrediënten: "):]
if output.lower().startswith("ingredients: "):
output = output[len("ingredients: "):]
return output
def post_processing_brand(brand):
if brand.lower() == "boni":
brand = "Boni Selection"
elif brand.lower() == "rana":
brand = "Giovanni Rana"
elif brand.lower() == "the market":
brand = "Carrefour The Market"
elif brand.lower() == "extra":
brand = "Carrefour Extra"
return brand
def post_processing_nutritionals(predicted_value):
try:
predicted_value = re.findall(r"[-+]?\d*\.\d+|\d+", str(predicted_value))[0]
except:
predicted_value = np.nan
return predicted_value
def grade_levenshtein_match(predicted_value, reference_value):
score = Levenshtein.ratio(predicted_value.lower().strip(), reference_value.lower().strip())
return score
def grade_exact_match(predicted_value, reference_value):
reference_value = reference_value.lower().strip()
reference_value = re.sub(r'\s+', ' ', reference_value)
predicted_value = predicted_value.lower().strip()
score = int(predicted_value.lower().strip() == reference_value.lower().strip())
return score
def grade_rouge_score(predicted_value, reference_value):
scorer = rouge_scorer.RougeScorer(['rouge2'])
score = scorer.score(predicted_value, reference_value)['rouge2'].fmeasure
return score
def grade_numerical(predicted_value, reference_value):
try:
if np.isnan(float(predicted_value)) and np.isnan(float(reference_value)):
score = 1
else:
score = int(float(predicted_value) == float(reference_value))
except:
score = -1
return score
def create_eval_data(OUTPUT_DIR, feature_assessment_entry):
df_product_id = pd.read_csv(f"{OUTPUT_DIR}/reference_data.csv")
df_features = pd.read_csv(f"{OUTPUT_DIR}/{feature_assessment_entry['name']}.csv")
df_features = df_features.merge(df_product_id, on='ID', how='left')
df_eval_data = df_features[
['ID', feature_assessment_entry['output_column'], 'Extracted_Text', 'Price', 'Processing time']].copy()
df_eval_data.rename(columns={feature_assessment_entry['output_column']: 'Reference'}, inplace=True)
df_eval_data.rename(columns={'Extracted_Text': 'Predicted'}, inplace=True)
df_eval_data['Predicted'] = df_eval_data.apply(
lambda row: eval(feature_assessment_entry['post_processing_function_name'])(row['Predicted']), axis=1)
df_eval_data['accuracy_score'] = df_eval_data.apply(
lambda row: eval(feature_assessment_entry['scoring_function_name'])(row['Predicted'], row['Reference']), axis=1)
df_eval_data['accuracy_score'] = round(df_eval_data['accuracy_score'], 2)
N = len(df_eval_data)
k = feature_assessment_entry['k_folds']
np.random.seed(42)
df_eval_data['fold'] = np.random.randint(0, k, size=N)
return df_eval_data
def merge_and_save_data(OUTPUT_DIR):
df_ref_data = pd.read_csv(f"{OUTPUT_DIR}/data_extraction/reference_data.csv")
data_merged = [df_ref_data[['ID', 'Front photo', 'Nutritionals photo', 'Ingredients photo', 'EAN photo']]]
for feature_name in feature_assessment_entries.keys():
df_eval_data = create_eval_data(f'{OUTPUT_DIR}/data_extraction', feature_assessment_entries[feature_name])
df_eval_data = df_eval_data[['Reference', 'Predicted', 'accuracy_score']]
df_eval_data.rename(columns={'Reference': 'Reference_' + feature_name}, inplace=True)
df_eval_data.rename(columns={'Predicted': 'Predicted_' + feature_name}, inplace=True)
df_eval_data.rename(columns={'accuracy_score': 'accuracy_score_' + feature_name}, inplace=True)
data_merged.append(df_eval_data)
data_merged = pd.concat(data_merged, axis=1)
data_merged.to_csv(f"{OUTPUT_DIR}/data_extraction/merged.csv")
return data_merged
|