|
|
|
|
|
import threading
|
|
import time
|
|
from http import HTTPStatus
|
|
from pathlib import Path
|
|
|
|
import requests
|
|
|
|
from ultralytics.hub.utils import HUB_WEB_ROOT, HELP_MSG, PREFIX, TQDM
|
|
from ultralytics.utils import LOGGER, SETTINGS, __version__, checks, emojis, is_colab
|
|
from ultralytics.utils.errors import HUBModelError
|
|
|
|
AGENT_NAME = f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local"
|
|
|
|
|
|
class HUBTrainingSession:
|
|
"""
|
|
HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing.
|
|
|
|
Attributes:
|
|
agent_id (str): Identifier for the instance communicating with the server.
|
|
model_id (str): Identifier for the YOLO model being trained.
|
|
model_url (str): URL for the model in Ultralytics HUB.
|
|
api_url (str): API URL for the model in Ultralytics HUB.
|
|
auth_header (dict): Authentication header for the Ultralytics HUB API requests.
|
|
rate_limits (dict): Rate limits for different API calls (in seconds).
|
|
timers (dict): Timers for rate limiting.
|
|
metrics_queue (dict): Queue for the model's metrics.
|
|
model (dict): Model data fetched from Ultralytics HUB.
|
|
alive (bool): Indicates if the heartbeat loop is active.
|
|
"""
|
|
|
|
def __init__(self, identifier):
|
|
"""
|
|
Initialize the HUBTrainingSession with the provided model identifier.
|
|
|
|
Args:
|
|
identifier (str): Model identifier used to initialize the HUB training session.
|
|
It can be a URL string or a model key with specific format.
|
|
|
|
Raises:
|
|
ValueError: If the provided model identifier is invalid.
|
|
ConnectionError: If connecting with global API key is not supported.
|
|
ModuleNotFoundError: If hub-sdk package is not installed.
|
|
"""
|
|
from hub_sdk import HUBClient
|
|
|
|
self.rate_limits = {
|
|
"metrics": 3.0,
|
|
"ckpt": 900.0,
|
|
"heartbeat": 300.0,
|
|
}
|
|
self.metrics_queue = {}
|
|
self.metrics_upload_failed_queue = {}
|
|
self.timers = {}
|
|
|
|
|
|
api_key, model_id, self.filename = self._parse_identifier(identifier)
|
|
|
|
|
|
active_key = api_key or SETTINGS.get("api_key")
|
|
credentials = {"api_key": active_key} if active_key else None
|
|
|
|
|
|
self.client = HUBClient(credentials)
|
|
|
|
if model_id:
|
|
self.load_model(model_id)
|
|
else:
|
|
self.model = self.client.model()
|
|
|
|
def load_model(self, model_id):
|
|
"""Loads an existing model from Ultralytics HUB using the provided model identifier."""
|
|
self.model = self.client.model(model_id)
|
|
if not self.model.data:
|
|
raise ValueError(emojis("β The specified HUB model does not exist"))
|
|
|
|
self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"
|
|
|
|
self._set_train_args()
|
|
|
|
|
|
self.model.start_heartbeat(self.rate_limits["heartbeat"])
|
|
LOGGER.info(f"{PREFIX}View model at {self.model_url} π")
|
|
|
|
def create_model(self, model_args):
|
|
"""Initializes a HUB training session with the specified model identifier."""
|
|
payload = {
|
|
"config": {
|
|
"batchSize": model_args.get("batch", -1),
|
|
"epochs": model_args.get("epochs", 300),
|
|
"imageSize": model_args.get("imgsz", 640),
|
|
"patience": model_args.get("patience", 100),
|
|
"device": model_args.get("device", ""),
|
|
"cache": model_args.get("cache", "ram"),
|
|
},
|
|
"dataset": {"name": model_args.get("data")},
|
|
"lineage": {
|
|
"architecture": {
|
|
"name": self.filename.replace(".pt", "").replace(".yaml", ""),
|
|
},
|
|
"parent": {},
|
|
},
|
|
"meta": {"name": self.filename},
|
|
}
|
|
|
|
if self.filename.endswith(".pt"):
|
|
payload["lineage"]["parent"]["name"] = self.filename
|
|
|
|
self.model.create_model(payload)
|
|
|
|
|
|
|
|
if not self.model.id:
|
|
return
|
|
|
|
self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"
|
|
|
|
|
|
self.model.start_heartbeat(self.rate_limits["heartbeat"])
|
|
|
|
LOGGER.info(f"{PREFIX}View model at {self.model_url} π")
|
|
|
|
def _parse_identifier(self, identifier):
|
|
"""
|
|
Parses the given identifier to determine the type of identifier and extract relevant components.
|
|
|
|
The method supports different identifier formats:
|
|
- A HUB URL, which starts with HUB_WEB_ROOT followed by '/models/'
|
|
- An identifier containing an API key and a model ID separated by an underscore
|
|
- An identifier that is solely a model ID of a fixed length
|
|
- A local filename that ends with '.pt' or '.yaml'
|
|
|
|
Args:
|
|
identifier (str): The identifier string to be parsed.
|
|
|
|
Returns:
|
|
(tuple): A tuple containing the API key, model ID, and filename as applicable.
|
|
|
|
Raises:
|
|
HUBModelError: If the identifier format is not recognized.
|
|
"""
|
|
|
|
|
|
api_key, model_id, filename = None, None, None
|
|
|
|
|
|
if identifier.startswith(f"{HUB_WEB_ROOT}/models/"):
|
|
|
|
model_id = identifier.split(f"{HUB_WEB_ROOT}/models/")[-1]
|
|
else:
|
|
|
|
parts = identifier.split("_")
|
|
|
|
|
|
if len(parts) == 2 and len(parts[0]) == 42 and len(parts[1]) == 20:
|
|
api_key, model_id = parts
|
|
|
|
elif len(parts) == 1 and len(parts[0]) == 20:
|
|
model_id = parts[0]
|
|
|
|
elif identifier.endswith(".pt") or identifier.endswith(".yaml"):
|
|
filename = identifier
|
|
else:
|
|
raise HUBModelError(
|
|
f"model='{identifier}' could not be parsed. Check format is correct. "
|
|
f"Supported formats are Ultralytics HUB URL, apiKey_modelId, modelId, local pt or yaml file."
|
|
)
|
|
|
|
return api_key, model_id, filename
|
|
|
|
def _set_train_args(self):
|
|
"""
|
|
Initializes training arguments and creates a model entry on the Ultralytics HUB.
|
|
|
|
This method sets up training arguments based on the model's state and updates them with any additional
|
|
arguments provided. It handles different states of the model, such as whether it's resumable, pretrained,
|
|
or requires specific file setup.
|
|
|
|
Raises:
|
|
ValueError: If the model is already trained, if required dataset information is missing, or if there are
|
|
issues with the provided training arguments.
|
|
"""
|
|
if self.model.is_trained():
|
|
raise ValueError(emojis(f"Model is already trained and uploaded to {self.model_url} π"))
|
|
|
|
if self.model.is_resumable():
|
|
|
|
self.train_args = {"data": self.model.get_dataset_url(), "resume": True}
|
|
self.model_file = self.model.get_weights_url("last")
|
|
else:
|
|
|
|
self.train_args = self.model.data.get("train_args")
|
|
|
|
|
|
self.model_file = (
|
|
self.model.get_weights_url("parent") if self.model.is_pretrained() else self.model.get_architecture()
|
|
)
|
|
|
|
if "data" not in self.train_args:
|
|
|
|
raise ValueError("Dataset may still be processing. Please wait a minute and try again.")
|
|
|
|
self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False)
|
|
self.model_id = self.model.id
|
|
|
|
def request_queue(
|
|
self,
|
|
request_func,
|
|
retry=3,
|
|
timeout=30,
|
|
thread=True,
|
|
verbose=True,
|
|
progress_total=None,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
def retry_request():
|
|
"""Attempts to call `request_func` with retries, timeout, and optional threading."""
|
|
t0 = time.time()
|
|
for i in range(retry + 1):
|
|
if (time.time() - t0) > timeout:
|
|
LOGGER.warning(f"{PREFIX}Timeout for request reached. {HELP_MSG}")
|
|
break
|
|
|
|
response = request_func(*args, **kwargs)
|
|
if response is None:
|
|
LOGGER.warning(f"{PREFIX}Received no response from the request. {HELP_MSG}")
|
|
time.sleep(2**i)
|
|
continue
|
|
|
|
if progress_total:
|
|
self._show_upload_progress(progress_total, response)
|
|
|
|
if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES:
|
|
|
|
if kwargs.get("metrics"):
|
|
self.metrics_upload_failed_queue = {}
|
|
return response
|
|
|
|
if i == 0:
|
|
|
|
message = self._get_failure_message(response, retry, timeout)
|
|
|
|
if verbose:
|
|
LOGGER.warning(f"{PREFIX}{message} {HELP_MSG} ({response.status_code})")
|
|
|
|
if not self._should_retry(response.status_code):
|
|
LOGGER.warning(f"{PREFIX}Request failed. {HELP_MSG} ({response.status_code}")
|
|
break
|
|
|
|
time.sleep(2**i)
|
|
|
|
|
|
if response is None and kwargs.get("metrics"):
|
|
self.metrics_upload_failed_queue.update(kwargs.get("metrics", None))
|
|
|
|
return response
|
|
|
|
if thread:
|
|
|
|
threading.Thread(target=retry_request, daemon=True).start()
|
|
else:
|
|
|
|
return retry_request()
|
|
|
|
def _should_retry(self, status_code):
|
|
"""Determines if a request should be retried based on the HTTP status code."""
|
|
retry_codes = {
|
|
HTTPStatus.REQUEST_TIMEOUT,
|
|
HTTPStatus.BAD_GATEWAY,
|
|
HTTPStatus.GATEWAY_TIMEOUT,
|
|
}
|
|
return status_code in retry_codes
|
|
|
|
def _get_failure_message(self, response: requests.Response, retry: int, timeout: int):
|
|
"""
|
|
Generate a retry message based on the response status code.
|
|
|
|
Args:
|
|
response: The HTTP response object.
|
|
retry: The number of retry attempts allowed.
|
|
timeout: The maximum timeout duration.
|
|
|
|
Returns:
|
|
(str): The retry message.
|
|
"""
|
|
if self._should_retry(response.status_code):
|
|
return f"Retrying {retry}x for {timeout}s." if retry else ""
|
|
elif response.status_code == HTTPStatus.TOO_MANY_REQUESTS:
|
|
headers = response.headers
|
|
return (
|
|
f"Rate limit reached ({headers['X-RateLimit-Remaining']}/{headers['X-RateLimit-Limit']}). "
|
|
f"Please retry after {headers['Retry-After']}s."
|
|
)
|
|
else:
|
|
try:
|
|
return response.json().get("message", "No JSON message.")
|
|
except AttributeError:
|
|
return "Unable to read JSON."
|
|
|
|
def upload_metrics(self):
|
|
"""Upload model metrics to Ultralytics HUB."""
|
|
return self.request_queue(self.model.upload_metrics, metrics=self.metrics_queue.copy(), thread=True)
|
|
|
|
def upload_model(
|
|
self,
|
|
epoch: int,
|
|
weights: str,
|
|
is_best: bool = False,
|
|
map: float = 0.0,
|
|
final: bool = False,
|
|
) -> None:
|
|
"""
|
|
Upload a model checkpoint to Ultralytics HUB.
|
|
|
|
Args:
|
|
epoch (int): The current training epoch.
|
|
weights (str): Path to the model weights file.
|
|
is_best (bool): Indicates if the current model is the best one so far.
|
|
map (float): Mean average precision of the model.
|
|
final (bool): Indicates if the model is the final model after training.
|
|
"""
|
|
if Path(weights).is_file():
|
|
progress_total = Path(weights).stat().st_size if final else None
|
|
self.request_queue(
|
|
self.model.upload_model,
|
|
epoch=epoch,
|
|
weights=weights,
|
|
is_best=is_best,
|
|
map=map,
|
|
final=final,
|
|
retry=10,
|
|
timeout=3600,
|
|
thread=not final,
|
|
progress_total=progress_total,
|
|
)
|
|
else:
|
|
LOGGER.warning(f"{PREFIX}WARNING β οΈ Model upload issue. Missing model {weights}.")
|
|
|
|
def _show_upload_progress(self, content_length: int, response: requests.Response) -> None:
|
|
"""
|
|
Display a progress bar to track the upload progress of a file download.
|
|
|
|
Args:
|
|
content_length (int): The total size of the content to be downloaded in bytes.
|
|
response (requests.Response): The response object from the file download request.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
with TQDM(total=content_length, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
|
|
for data in response.iter_content(chunk_size=1024):
|
|
pbar.update(len(data))
|
|
|