|
|
|
|
|
import inspect
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
|
from ultralytics.hub.utils import HUB_WEB_ROOT
|
|
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
|
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, SETTINGS, callbacks, checks, emojis, yaml_load
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""
|
|
A base class for implementing YOLO models, unifying APIs across different model types.
|
|
|
|
This class provides a common interface for various operations related to YOLO models, such as training,
|
|
validation, prediction, exporting, and benchmarking. It handles different types of models, including those
|
|
loaded from local files, Ultralytics HUB, or Triton Server. The class is designed to be flexible and
|
|
extendable for different tasks and model configurations.
|
|
|
|
Args:
|
|
model (Union[str, Path], optional): Path or name of the model to load or create. This can be a local file
|
|
path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
|
|
task (Any, optional): The task type associated with the YOLO model. This can be used to specify the model's
|
|
application domain, such as object detection, segmentation, etc. Defaults to None.
|
|
verbose (bool, optional): If True, enables verbose output during the model's operations. Defaults to False.
|
|
|
|
Attributes:
|
|
callbacks (dict): A dictionary of callback functions for various events during model operations.
|
|
predictor (BasePredictor): The predictor object used for making predictions.
|
|
model (nn.Module): The underlying PyTorch model.
|
|
trainer (BaseTrainer): The trainer object used for training the model.
|
|
ckpt (dict): The checkpoint data if the model is loaded from a *.pt file.
|
|
cfg (str): The configuration of the model if loaded from a *.yaml file.
|
|
ckpt_path (str): The path to the checkpoint file.
|
|
overrides (dict): A dictionary of overrides for model configuration.
|
|
metrics (dict): The latest training/validation metrics.
|
|
session (HUBTrainingSession): The Ultralytics HUB session, if applicable.
|
|
task (str): The type of task the model is intended for.
|
|
model_name (str): The name of the model.
|
|
|
|
Methods:
|
|
__call__: Alias for the predict method, enabling the model instance to be callable.
|
|
_new: Initializes a new model based on a configuration file.
|
|
_load: Loads a model from a checkpoint file.
|
|
_check_is_pytorch_model: Ensures that the model is a PyTorch model.
|
|
reset_weights: Resets the model's weights to their initial state.
|
|
load: Loads model weights from a specified file.
|
|
save: Saves the current state of the model to a file.
|
|
info: Logs or returns information about the model.
|
|
fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference.
|
|
predict: Performs object detection predictions.
|
|
track: Performs object tracking.
|
|
val: Validates the model on a dataset.
|
|
benchmark: Benchmarks the model on various export formats.
|
|
export: Exports the model to different formats.
|
|
train: Trains the model on a dataset.
|
|
tune: Performs hyperparameter tuning.
|
|
_apply: Applies a function to the model's tensors.
|
|
add_callback: Adds a callback function for an event.
|
|
clear_callback: Clears all callbacks for an event.
|
|
reset_callbacks: Resets all callbacks to their default functions.
|
|
_get_hub_session: Retrieves or creates an Ultralytics HUB session.
|
|
is_triton_model: Checks if a model is a Triton Server model.
|
|
is_hub_model: Checks if a model is an Ultralytics HUB model.
|
|
_reset_ckpt_args: Resets checkpoint arguments when loading a PyTorch model.
|
|
_smart_load: Loads the appropriate module based on the model task.
|
|
task_map: Provides a mapping from model tasks to corresponding classes.
|
|
|
|
Raises:
|
|
FileNotFoundError: If the specified model file does not exist or is inaccessible.
|
|
ValueError: If the model file or configuration is invalid or unsupported.
|
|
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
|
|
TypeError: If the model is not a PyTorch model when required.
|
|
AttributeError: If required attributes or methods are not implemented or available.
|
|
NotImplementedError: If a specific model task or mode is not supported.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: Union[str, Path] = "yolov8n.pt",
|
|
task: str = None,
|
|
verbose: bool = False,
|
|
) -> None:
|
|
"""
|
|
Initializes a new instance of the YOLO model class.
|
|
|
|
This constructor sets up the model based on the provided model path or name. It handles various types of model
|
|
sources, including local files, Ultralytics HUB models, and Triton Server models. The method initializes several
|
|
important attributes of the model and prepares it for operations like training, prediction, or export.
|
|
|
|
Args:
|
|
model (Union[str, Path], optional): The path or model file to load or create. This can be a local
|
|
file path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
|
|
task (Any, optional): The task type associated with the YOLO model, specifying its application domain.
|
|
Defaults to None.
|
|
verbose (bool, optional): If True, enables verbose output during the model's initialization and subsequent
|
|
operations. Defaults to False.
|
|
|
|
Raises:
|
|
FileNotFoundError: If the specified model file does not exist or is inaccessible.
|
|
ValueError: If the model file or configuration is invalid or unsupported.
|
|
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
|
|
"""
|
|
super().__init__()
|
|
self.callbacks = callbacks.get_default_callbacks()
|
|
self.predictor = None
|
|
self.model = None
|
|
self.trainer = None
|
|
self.ckpt = None
|
|
self.cfg = None
|
|
self.ckpt_path = None
|
|
self.overrides = {}
|
|
self.metrics = None
|
|
self.session = None
|
|
self.task = task
|
|
model = str(model).strip()
|
|
|
|
|
|
if self.is_hub_model(model):
|
|
|
|
checks.check_requirements("hub-sdk>=0.0.6")
|
|
self.session = self._get_hub_session(model)
|
|
model = self.session.model_file
|
|
|
|
|
|
elif self.is_triton_model(model):
|
|
self.model_name = self.model = model
|
|
self.task = task
|
|
return
|
|
|
|
|
|
if Path(model).suffix in (".yaml", ".yml"):
|
|
self._new(model, task=task, verbose=verbose)
|
|
else:
|
|
self._load(model, task=task)
|
|
|
|
def __call__(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
An alias for the predict method, enabling the model instance to be callable.
|
|
|
|
This method simplifies the process of making predictions by allowing the model instance to be called directly
|
|
with the required arguments for prediction.
|
|
|
|
Args:
|
|
source (str | Path | int | PIL.Image | np.ndarray, optional): The source of the image for making
|
|
predictions. Accepts various types, including file paths, URLs, PIL images, and numpy arrays.
|
|
Defaults to None.
|
|
stream (bool, optional): If True, treats the input source as a continuous stream for predictions.
|
|
Defaults to False.
|
|
**kwargs (any): Additional keyword arguments for configuring the prediction process.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
|
"""
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
@staticmethod
|
|
def _get_hub_session(model: str):
|
|
"""Creates a session for Hub Training."""
|
|
from ultralytics.hub.session import HUBTrainingSession
|
|
|
|
session = HUBTrainingSession(model)
|
|
return session if session.client.authenticated else None
|
|
|
|
@staticmethod
|
|
def is_triton_model(model: str) -> bool:
|
|
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>"""
|
|
from urllib.parse import urlsplit
|
|
|
|
url = urlsplit(model)
|
|
return url.netloc and url.path and url.scheme in {"http", "grpc"}
|
|
|
|
@staticmethod
|
|
def is_hub_model(model: str) -> bool:
|
|
"""Check if the provided model is a HUB model."""
|
|
return any(
|
|
(
|
|
model.startswith(f"{HUB_WEB_ROOT}/models/"),
|
|
[len(x) for x in model.split("_")] == [42, 20],
|
|
len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"),
|
|
)
|
|
)
|
|
|
|
def _new(self, cfg: str, task=None, model=None, verbose=False) -> None:
|
|
"""
|
|
Initializes a new model and infers the task type from the model definitions.
|
|
|
|
Args:
|
|
cfg (str): model configuration file
|
|
task (str | None): model task
|
|
model (BaseModel): Customized model.
|
|
verbose (bool): display model info on load
|
|
"""
|
|
cfg_dict = yaml_model_load(cfg)
|
|
self.cfg = cfg
|
|
self.task = task or guess_model_task(cfg_dict)
|
|
self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1)
|
|
self.overrides["model"] = self.cfg
|
|
self.overrides["task"] = self.task
|
|
|
|
|
|
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides}
|
|
self.model.task = self.task
|
|
self.model_name = cfg
|
|
|
|
def _load(self, weights: str, task=None) -> None:
|
|
"""
|
|
Initializes a new model and infers the task type from the model head.
|
|
|
|
Args:
|
|
weights (str): model checkpoint to be loaded
|
|
task (str | None): model task
|
|
"""
|
|
if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
|
|
weights = checks.check_file(weights)
|
|
weights = checks.check_model_file_from_stem(weights)
|
|
|
|
if Path(weights).suffix == ".pt":
|
|
self.model, self.ckpt = attempt_load_one_weight(weights)
|
|
self.task = self.model.args["task"]
|
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
|
self.ckpt_path = self.model.pt_path
|
|
else:
|
|
weights = checks.check_file(weights)
|
|
self.model, self.ckpt = weights, None
|
|
self.task = task or guess_model_task(weights)
|
|
self.ckpt_path = weights
|
|
self.overrides["model"] = weights
|
|
self.overrides["task"] = self.task
|
|
self.model_name = weights
|
|
|
|
def _check_is_pytorch_model(self) -> None:
|
|
"""Raises TypeError is model is not a PyTorch model."""
|
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
|
|
pt_module = isinstance(self.model, nn.Module)
|
|
if not (pt_module or pt_str):
|
|
raise TypeError(
|
|
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
|
|
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
|
|
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
|
|
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
|
|
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
|
|
)
|
|
|
|
def reset_weights(self) -> "Model":
|
|
"""
|
|
Resets the model parameters to randomly initialized values, effectively discarding all training information.
|
|
|
|
This method iterates through all modules in the model and resets their parameters if they have a
|
|
'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True, enabling them
|
|
to be updated during training.
|
|
|
|
Returns:
|
|
self (ultralytics.engine.model.Model): The instance of the class with reset weights.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
for m in self.model.modules():
|
|
if hasattr(m, "reset_parameters"):
|
|
m.reset_parameters()
|
|
for p in self.model.parameters():
|
|
p.requires_grad = True
|
|
return self
|
|
|
|
def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model":
|
|
"""
|
|
Loads parameters from the specified weights file into the model.
|
|
|
|
This method supports loading weights from a file or directly from a weights object. It matches parameters by
|
|
name and shape and transfers them to the model.
|
|
|
|
Args:
|
|
weights (str | Path): Path to the weights file or a weights object. Defaults to 'yolov8n.pt'.
|
|
|
|
Returns:
|
|
self (ultralytics.engine.model.Model): The instance of the class with loaded weights.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if isinstance(weights, (str, Path)):
|
|
weights, self.ckpt = attempt_load_one_weight(weights)
|
|
self.model.load(weights)
|
|
return self
|
|
|
|
def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None:
|
|
"""
|
|
Saves the current model state to a file.
|
|
|
|
This method exports the model's checkpoint (ckpt) to the specified filename.
|
|
|
|
Args:
|
|
filename (str | Path): The name of the file to save the model to. Defaults to 'saved_model.pt'.
|
|
use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from ultralytics import __version__
|
|
from datetime import datetime
|
|
|
|
updates = {
|
|
"date": datetime.now().isoformat(),
|
|
"version": __version__,
|
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
"docs": "https://docs.ultralytics.com",
|
|
}
|
|
torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill)
|
|
|
|
def info(self, detailed: bool = False, verbose: bool = True):
|
|
"""
|
|
Logs or returns model information.
|
|
|
|
This method provides an overview or detailed information about the model, depending on the arguments passed.
|
|
It can control the verbosity of the output.
|
|
|
|
Args:
|
|
detailed (bool): If True, shows detailed information about the model. Defaults to False.
|
|
verbose (bool): If True, prints the information. If False, returns the information. Defaults to True.
|
|
|
|
Returns:
|
|
(list): Various types of information about the model, depending on the 'detailed' and 'verbose' parameters.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
return self.model.info(detailed=detailed, verbose=verbose)
|
|
|
|
def fuse(self):
|
|
"""
|
|
Fuses Conv2d and BatchNorm2d layers in the model.
|
|
|
|
This method optimizes the model by fusing Conv2d and BatchNorm2d layers, which can improve inference speed.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
self.model.fuse()
|
|
|
|
def embed(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
Generates image embeddings based on the provided source.
|
|
|
|
This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image source.
|
|
It allows customization of the embedding process through various keyword arguments.
|
|
|
|
Args:
|
|
source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings.
|
|
The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None.
|
|
stream (bool): If True, predictions are streamed. Defaults to False.
|
|
**kwargs (any): Additional keyword arguments for configuring the embedding process.
|
|
|
|
Returns:
|
|
(List[torch.Tensor]): A list containing the image embeddings.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
if not kwargs.get("embed"):
|
|
kwargs["embed"] = [len(self.model.model) - 2]
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
def predict(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
predictor=None,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
Performs predictions on the given image source using the YOLO model.
|
|
|
|
This method facilitates the prediction process, allowing various configurations through keyword arguments.
|
|
It supports predictions with custom predictors or the default predictor method. The method handles different
|
|
types of image sources and can operate in a streaming mode. It also provides support for SAM-type models
|
|
through 'prompts'.
|
|
|
|
The method sets up a new predictor if not already present and updates its arguments with each call.
|
|
It also issues a warning and uses default assets if the 'source' is not provided. The method determines if it
|
|
is being called from the command line interface and adjusts its behavior accordingly, including setting defaults
|
|
for confidence threshold and saving behavior.
|
|
|
|
Args:
|
|
source (str | int | PIL.Image | np.ndarray, optional): The source of the image for making predictions.
|
|
Accepts various types, including file paths, URLs, PIL images, and numpy arrays. Defaults to ASSETS.
|
|
stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False.
|
|
predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions.
|
|
If None, the method uses a default predictor. Defaults to None.
|
|
**kwargs (any): Additional keyword arguments for configuring the prediction process. These arguments allow
|
|
for further customization of the prediction behavior.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
|
|
|
Raises:
|
|
AttributeError: If the predictor is not properly set up.
|
|
"""
|
|
if source is None:
|
|
source = ASSETS
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
|
|
|
is_cli = (sys.argv[0].endswith("yolo") or sys.argv[0].endswith("ultralytics")) and any(
|
|
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
|
|
)
|
|
|
|
custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"}
|
|
args = {**self.overrides, **custom, **kwargs}
|
|
prompts = args.pop("prompts", None)
|
|
|
|
if not self.predictor:
|
|
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
|
|
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
|
else:
|
|
self.predictor.args = get_cfg(self.predictor.args, args)
|
|
if "project" in args or "name" in args:
|
|
self.predictor.save_dir = get_save_dir(self.predictor.args)
|
|
if prompts and hasattr(self.predictor, "set_prompts"):
|
|
self.predictor.set_prompts(prompts)
|
|
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
|
|
|
def track(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
persist: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
Conducts object tracking on the specified input source using the registered trackers.
|
|
|
|
This method performs object tracking using the model's predictors and optionally registered trackers. It is
|
|
capable of handling different types of input sources such as file paths or video streams. The method supports
|
|
customization of the tracking process through various keyword arguments. It registers trackers if they are not
|
|
already present and optionally persists them based on the 'persist' flag.
|
|
|
|
The method sets a default confidence threshold specifically for ByteTrack-based tracking, which requires low
|
|
confidence predictions as input. The tracking mode is explicitly set in the keyword arguments.
|
|
|
|
Args:
|
|
source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream.
|
|
stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False.
|
|
persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False.
|
|
**kwargs (any): Additional keyword arguments for configuring the tracking process. These arguments allow
|
|
for further customization of the tracking behavior.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of tracking results, encapsulated in the Results class.
|
|
|
|
Raises:
|
|
AttributeError: If the predictor does not have registered trackers.
|
|
"""
|
|
if not hasattr(self.predictor, "trackers"):
|
|
from ultralytics.trackers import register_tracker
|
|
|
|
register_tracker(self, persist)
|
|
kwargs["conf"] = kwargs.get("conf") or 0.1
|
|
kwargs["batch"] = kwargs.get("batch") or 1
|
|
kwargs["mode"] = "track"
|
|
return self.predict(source=source, stream=stream, **kwargs)
|
|
|
|
def val(
|
|
self,
|
|
validator=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Validates the model using a specified dataset and validation configuration.
|
|
|
|
This method facilitates the model validation process, allowing for a range of customization through various
|
|
settings and configurations. It supports validation with a custom validator or the default validation approach.
|
|
The method combines default configurations, method-specific defaults, and user-provided arguments to configure
|
|
the validation process. After validation, it updates the model's metrics with the results obtained from the
|
|
validator.
|
|
|
|
The method supports various arguments that allow customization of the validation process. For a comprehensive
|
|
list of all configurable options, users should refer to the 'configuration' section in the documentation.
|
|
|
|
Args:
|
|
validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If
|
|
None, the method uses a default validator. Defaults to None.
|
|
**kwargs (any): Arbitrary keyword arguments representing the validation configuration. These arguments are
|
|
used to customize various aspects of the validation process.
|
|
|
|
Returns:
|
|
(dict): Validation metrics obtained from the validation process.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
custom = {"rect": True}
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "val"}
|
|
|
|
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
|
|
validator(model=self.model)
|
|
self.metrics = validator.metrics
|
|
return validator.metrics
|
|
|
|
def benchmark(
|
|
self,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Benchmarks the model across various export formats to evaluate performance.
|
|
|
|
This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc.
|
|
It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is configured
|
|
using a combination of default configuration values, model-specific arguments, method-specific defaults, and
|
|
any additional user-provided keyword arguments.
|
|
|
|
The method supports various arguments that allow customization of the benchmarking process, such as dataset
|
|
choice, image size, precision modes, device selection, and verbosity. For a comprehensive list of all
|
|
configurable options, users should refer to the 'configuration' section in the documentation.
|
|
|
|
Args:
|
|
**kwargs (any): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
|
|
default configurations, model-specific arguments, and method defaults.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the results of the benchmarking process.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from ultralytics.utils.benchmarks import benchmark
|
|
|
|
custom = {"verbose": False}
|
|
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
|
|
return benchmark(
|
|
model=self,
|
|
data=kwargs.get("data"),
|
|
imgsz=args["imgsz"],
|
|
half=args["half"],
|
|
int8=args["int8"],
|
|
device=args["device"],
|
|
verbose=kwargs.get("verbose"),
|
|
)
|
|
|
|
def export(
|
|
self,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Exports the model to a different format suitable for deployment.
|
|
|
|
This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment
|
|
purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method
|
|
defaults, and any additional arguments provided. The combined arguments are used to configure export settings.
|
|
|
|
The method supports a wide range of arguments to customize the export process. For a comprehensive list of all
|
|
possible arguments, refer to the 'configuration' section in the documentation.
|
|
|
|
Args:
|
|
**kwargs (any): Arbitrary keyword arguments to customize the export process. These are combined with the
|
|
model's overrides and method defaults.
|
|
|
|
Returns:
|
|
(object): The exported model in the specified format, or an object related to the export process.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from .exporter import Exporter
|
|
|
|
custom = {"imgsz": self.model.args["imgsz"], "batch": 1, "data": None, "verbose": False}
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "export"}
|
|
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
|
|
|
|
def train(
|
|
self,
|
|
trainer=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Trains the model using the specified dataset and training configuration.
|
|
|
|
This method facilitates model training with a range of customizable settings and configurations. It supports
|
|
training with a custom trainer or the default training approach defined in the method. The method handles
|
|
different scenarios, such as resuming training from a checkpoint, integrating with Ultralytics HUB, and
|
|
updating model and configuration after training.
|
|
|
|
When using Ultralytics HUB, if the session already has a loaded model, the method prioritizes HUB training
|
|
arguments and issues a warning if local arguments are provided. It checks for pip updates and combines default
|
|
configurations, method-specific defaults, and user-provided arguments to configure the training process. After
|
|
training, it updates the model and its configurations, and optionally attaches metrics.
|
|
|
|
Args:
|
|
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
|
|
method uses a default trainer. Defaults to None.
|
|
**kwargs (any): Arbitrary keyword arguments representing the training configuration. These arguments are
|
|
used to customize various aspects of the training process.
|
|
|
|
Returns:
|
|
(dict | None): Training metrics if available and training is successful; otherwise, None.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
PermissionError: If there is a permission issue with the HUB session.
|
|
ModuleNotFoundError: If the HUB SDK is not installed.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if hasattr(self.session, "model") and self.session.model.id:
|
|
if any(kwargs):
|
|
LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
|
|
kwargs = self.session.train_args
|
|
|
|
checks.check_pip_update_available()
|
|
|
|
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
|
|
custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]}
|
|
args = {**overrides, **custom, **kwargs, "mode": "train"}
|
|
if args.get("resume"):
|
|
args["resume"] = self.ckpt_path
|
|
|
|
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
|
|
if not args.get("resume"):
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
|
self.model = self.trainer.model
|
|
|
|
if SETTINGS["hub"] is True and not self.session:
|
|
|
|
try:
|
|
self.session = self._get_hub_session(self.model_name)
|
|
if self.session:
|
|
self.session.create_model(args)
|
|
|
|
if not getattr(self.session.model, "id", None):
|
|
self.session = None
|
|
except (PermissionError, ModuleNotFoundError):
|
|
|
|
pass
|
|
|
|
self.trainer.hub_session = self.session
|
|
self.trainer.train()
|
|
|
|
if RANK in (-1, 0):
|
|
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
|
|
self.model, _ = attempt_load_one_weight(ckpt)
|
|
self.overrides = self.model.args
|
|
self.metrics = getattr(self.trainer.validator, "metrics", None)
|
|
return self.metrics
|
|
|
|
def tune(
|
|
self,
|
|
use_ray=False,
|
|
iterations=10,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Conducts hyperparameter tuning for the model, with an option to use Ray Tune.
|
|
|
|
This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method.
|
|
When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module.
|
|
Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and
|
|
custom arguments to configure the tuning process.
|
|
|
|
Args:
|
|
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
|
|
iterations (int): The number of tuning iterations to perform. Defaults to 10.
|
|
*args (list): Variable length argument list for additional arguments.
|
|
**kwargs (any): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
|
|
|
|
Returns:
|
|
(dict): A dictionary containing the results of the hyperparameter search.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if use_ray:
|
|
from ultralytics.utils.tuner import run_ray_tune
|
|
|
|
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
|
|
else:
|
|
from .tuner import Tuner
|
|
|
|
custom = {}
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "train"}
|
|
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
|
|
|
|
def _apply(self, fn) -> "Model":
|
|
"""Apply to(), cpu(), cuda(), half(), float() to model tensors that are not parameters or registered buffers."""
|
|
self._check_is_pytorch_model()
|
|
self = super()._apply(fn)
|
|
self.predictor = None
|
|
self.overrides["device"] = self.device
|
|
return self
|
|
|
|
@property
|
|
def names(self) -> list:
|
|
"""
|
|
Retrieves the class names associated with the loaded model.
|
|
|
|
This property returns the class names if they are defined in the model. It checks the class names for validity
|
|
using the 'check_class_names' function from the ultralytics.nn.autobackend module.
|
|
|
|
Returns:
|
|
(list | None): The class names of the model if available, otherwise None.
|
|
"""
|
|
from ultralytics.nn.autobackend import check_class_names
|
|
|
|
return check_class_names(self.model.names) if hasattr(self.model, "names") else None
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
"""
|
|
Retrieves the device on which the model's parameters are allocated.
|
|
|
|
This property is used to determine whether the model's parameters are on CPU or GPU. It only applies to models
|
|
that are instances of nn.Module.
|
|
|
|
Returns:
|
|
(torch.device | None): The device (CPU/GPU) of the model if it is a PyTorch model, otherwise None.
|
|
"""
|
|
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
|
|
|
|
@property
|
|
def transforms(self):
|
|
"""
|
|
Retrieves the transformations applied to the input data of the loaded model.
|
|
|
|
This property returns the transformations if they are defined in the model.
|
|
|
|
Returns:
|
|
(object | None): The transform object of the model if available, otherwise None.
|
|
"""
|
|
return self.model.transforms if hasattr(self.model, "transforms") else None
|
|
|
|
def add_callback(self, event: str, func) -> None:
|
|
"""
|
|
Adds a callback function for a specified event.
|
|
|
|
This method allows the user to register a custom callback function that is triggered on a specific event during
|
|
model training or inference.
|
|
|
|
Args:
|
|
event (str): The name of the event to attach the callback to.
|
|
func (callable): The callback function to be registered.
|
|
|
|
Raises:
|
|
ValueError: If the event name is not recognized.
|
|
"""
|
|
self.callbacks[event].append(func)
|
|
|
|
def clear_callback(self, event: str) -> None:
|
|
"""
|
|
Clears all callback functions registered for a specified event.
|
|
|
|
This method removes all custom and default callback functions associated with the given event.
|
|
|
|
Args:
|
|
event (str): The name of the event for which to clear the callbacks.
|
|
|
|
Raises:
|
|
ValueError: If the event name is not recognized.
|
|
"""
|
|
self.callbacks[event] = []
|
|
|
|
def reset_callbacks(self) -> None:
|
|
"""
|
|
Resets all callbacks to their default functions.
|
|
|
|
This method reinstates the default callback functions for all events, removing any custom callbacks that were
|
|
added previously.
|
|
"""
|
|
for event in callbacks.default_callbacks.keys():
|
|
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
|
|
|
@staticmethod
|
|
def _reset_ckpt_args(args: dict) -> dict:
|
|
"""Reset arguments when loading a PyTorch model."""
|
|
include = {"imgsz", "data", "task", "single_cls"}
|
|
return {k: v for k, v in args.items() if k in include}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _smart_load(self, key: str):
|
|
"""Load model/trainer/validator/predictor."""
|
|
try:
|
|
return self.task_map[self.task][key]
|
|
except Exception as e:
|
|
name = self.__class__.__name__
|
|
mode = inspect.stack()[1][3]
|
|
raise NotImplementedError(
|
|
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
|
|
) from e
|
|
|
|
@property
|
|
def task_map(self) -> dict:
|
|
"""
|
|
Map head to model, trainer, validator, and predictor classes.
|
|
|
|
Returns:
|
|
task_map (dict): The map of model task to mode classes.
|
|
"""
|
|
raise NotImplementedError("Please provide task map for your model!")
|
|
|