File size: 4,980 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---

comments: true
description: Learn how to view image results inside a compatible VSCode terminal.
keywords: YOLOv8, VSCode, Terminal, Remote Development, Ultralytics, SSH, Object Detection, Inference, Results, Remote Tunnel, Images, Helpful, Productivity Hack
---


# Viewing Inference Results in a Terminal

<p align="center">
  <img width="800" src="https://raw.githubusercontent.com/saitoha/libsixel/data/data/sixel.gif" alt="Sixel example of image in Terminal">
</p>

Image from the [libsixel](https://saitoha.github.io/libsixel/) website.

## Motivation

When connecting to a remote machine, normally visualizing image results is not possible or requires moving data to a local device with a GUI. The VSCode integrated terminal allows for directly rendering images. This is a short demonstration on how to use this in conjunction with `ultralytics` with [prediction results](../modes/predict.md).

!!! warning

    Only compatible with Linux and MacOS. Check the VSCode [repository](https://github.com/microsoft/vscode), check [Issue status](https://github.com/microsoft/vscode/issues/198622), or [documentation](https://code.visualstudio.com/docs) for updates about Windows support to view images in terminal with `sixel`.


The VSCode compatible protocols for viewing images using the integrated terminal are [`sixel`](https://en.wikipedia.org/wiki/Sixel) and [`iTerm`](https://iterm2.com/documentation-images.html). This guide will demonstrate use of the `sixel` protocol.

## Process

1. First, you must enable settings `terminal.integrated.enableImages` and `terminal.integrated.gpuAcceleration` in VSCode.

    ```yaml

    "terminal.integrated.gpuAcceleration": "auto" # "auto" is default, can also use "on"

    "terminal.integrated.enableImages": false

    ```


<p align="center">
  <img width="800" src="https://github.com/ultralytics/ultralytics/assets/62214284/d158ab1c-893c-4397-a5de-2f9f74f81175" alt="VSCode enable terminal images setting">
</p>

1. Install the `python-sixel` library in your virtual environment. This is a [fork](https://github.com/lubosz/python-sixel?tab=readme-ov-file) of the `PySixel` library, which is no longer maintained.

    ```bash

    pip install sixel

    ```


1. Import the relevant libraries

    ```py

    import io


    import cv2 as cv


    from ultralytics import YOLO

    from sixel import SixelWriter

    ```


1. Load a model and execute inference, then plot the results and store in a variable. See more about inference arguments and working with results on the [predict mode](../modes/predict.md) page.

    ```{ .py .annotate }

    from ultralytics import YOLO


    # Load a model

    model = YOLO("yolov8n.pt")


    # Run inference on an image

    results = model.predict(source="ultralytics/assets/bus.jpg")

    

    # Plot inference results

    plot = results[0].plot() #(1)!

    ```


    1. See [plot method parameters](../modes/predict.md#plot-method-parameters) to see possible arguments to use.

1. Now, use OpenCV to convert the `numpy.ndarray` to `bytes` data. Then use `io.BytesIO` to make a "file-like" object.

    ```{ .py .annotate }

    # Results image as bytes

    im_bytes = cv.imencode(

        ".png", #(1)!

        plot,

        )[1].tobytes() #(2)!


    # Image bytes as a file-like object

    mem_file = io.BytesIO(im_bytes)

    ```


    1. It's possible to use other image extensions as well.
    2. Only the object at index `1` that is returned is needed.

1. Create a `SixelWriter` instance, and then use the `.draw()` method to draw the image in the terminal.

    ```py

    # Create sixel writer object

    w = SixelWriter()


    # Draw the sixel image in the terminal

    w.draw(mem_file)

    ```


## Example Inference Results

<p align="center">
  <img width="800" src="https://github.com/ultralytics/ultralytics/assets/62214284/6743ab64-300d-4429-bdce-e246455f7b68" alt="View Image in Terminal">
</p>

!!! danger

    Using this example with videos or animated GIF frames has **not** been tested. Attempt at your own risk.


## Full Code Example

```{ .py .annotate }

import io



import cv2 as cv



from ultralytics import YOLO

from sixel import SixelWriter



# Load a model

model = YOLO("yolov8n.pt")



# Run inference on an image

results = model.predict(source="ultralytics/assets/bus.jpg")



# Plot inference results

plot = results[0].plot() #(3)!



# Results image as bytes

im_bytes = cv.imencode(

    ".png", #(1)!

    plot,

    )[1].tobytes() #(2)!



mem_file = io.BytesIO(im_bytes)

w = SixelWriter()

w.draw(mem_file)

```

1. It's possible to use other image extensions as well.
2. Only the object at index `1` that is returned is needed.
3. See [plot method parameters](../modes/predict.md#plot-method-parameters) to see possible arguments to use.

---

!!! tip

    You may need to use `clear` to "erase" the view of the image in the terminal.