File size: 6,815 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---

comments: true
description: Instance Segmentation with Object Tracking using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Instance Segmentation, Object Detection, Object Tracking, Bounding Box, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK
---


# Instance Segmentation and Tracking using Ultralytics YOLOv8 πŸš€

## What is Instance Segmentation?

[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) instance segmentation involves identifying and outlining individual objects in an image, providing a detailed understanding of spatial distribution. Unlike semantic segmentation, it uniquely labels and precisely delineates each object, crucial for tasks like object detection and medical imaging.

There are two types of instance segmentation tracking available in the Ultralytics package:

- **Instance Segmentation with Class Objects:** Each class object is assigned a unique color for clear visual separation.

- **Instance Segmentation with Object Tracks:** Every track is represented by a distinct color, facilitating easy identification and tracking.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/75G_S1Ngji8"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Instance Segmentation with Object Tracking using Ultralytics YOLOv8
</p>

## Samples

|                                                          Instance Segmentation                                                          |                                                           Instance Segmentation + Object Tracking                                                            |
|:---------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Ultralytics Instance Segmentation](https://github.com/RizwanMunawar/ultralytics/assets/62513924/d4ad3499-1f33-4871-8fbc-1be0b2643aa2) | ![Ultralytics Instance Segmentation with Object Tracking](https://github.com/RizwanMunawar/ultralytics/assets/62513924/2e5c38cc-fd5c-4145-9682-fa94ae2010a0) |
|                                                  Ultralytics Instance Segmentation 😍                                                   |                                                  Ultralytics Instance Segmentation with Object Tracking πŸ”₯                                                   |

!!! Example "Instance Segmentation and Tracking"

    === "Instance Segmentation"


        ```python

        import cv2

        from ultralytics import YOLO

        from ultralytics.utils.plotting import Annotator, colors


        model = YOLO("yolov8n-seg.pt")  # segmentation model

        names = model.model.names

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        out = cv2.VideoWriter('instance-segmentation.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))


        while True:

            ret, im0 = cap.read()

            if not ret:

                print("Video frame is empty or video processing has been successfully completed.")

                break


            results = model.predict(im0)

            annotator = Annotator(im0, line_width=2)


            if results[0].masks is not None:

                clss = results[0].boxes.cls.cpu().tolist()

                masks = results[0].masks.xy

                for mask, cls in zip(masks, clss):

                    annotator.seg_bbox(mask=mask,

                                       mask_color=colors(int(cls), True),

                                       det_label=names[int(cls)])


            out.write(im0)

            cv2.imshow("instance-segmentation", im0)


            if cv2.waitKey(1) & 0xFF == ord('q'):

                break


        out.release()

        cap.release()

        cv2.destroyAllWindows()


        ```


    === "Instance Segmentation with Object Tracking"


        ```python

        import cv2

        from ultralytics import YOLO

        from ultralytics.utils.plotting import Annotator, colors


        from collections import defaultdict


        track_history = defaultdict(lambda: [])


        model = YOLO("yolov8n-seg.pt")   # segmentation model

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        out = cv2.VideoWriter('instance-segmentation-object-tracking.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))


        while True:

            ret, im0 = cap.read()

            if not ret:

                print("Video frame is empty or video processing has been successfully completed.")

                break


            annotator = Annotator(im0, line_width=2)


            results = model.track(im0, persist=True)


            if results[0].boxes.id is not None and results[0].masks is not None:

                masks = results[0].masks.xy

                track_ids = results[0].boxes.id.int().cpu().tolist()


                for mask, track_id in zip(masks, track_ids):

                    annotator.seg_bbox(mask=mask,

                                       mask_color=colors(track_id, True),

                                       track_label=str(track_id))


            out.write(im0)

            cv2.imshow("instance-segmentation-object-tracking", im0)


            if cv2.waitKey(1) & 0xFF == ord('q'):

                break


        out.release()

        cap.release()

        cv2.destroyAllWindows()

        ```


### `seg_bbox` Arguments



| Name          | Type    | Default         | Description                            |

|---------------|---------|-----------------|----------------------------------------|

| `mask`        | `array` | `None`          | Segmentation mask coordinates          |

| `mask_color`  | `tuple` | `(255, 0, 255)` | Mask color for every segmented box     |
| `det_label`   | `str`   | `None`          | Label for segmented object             |
| `track_label` | `str`   | `None`          | Label for segmented and tracked object |

## Note

For any inquiries, feel free to post your questions in the [Ultralytics Issue Section](https://github.com/ultralytics/ultralytics/issues/new/choose) or the discussion section mentioned below.