File size: 15,431 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
---

comments: true
description: Advanced Data Visualization with Ultralytics YOLOv8 Heatmaps
keywords: Ultralytics, YOLOv8, Advanced Data Visualization, Heatmap Technology, Object Detection and Tracking, Jupyter Notebook, Python SDK, Command Line Interface
---


# Advanced Data Visualization: Heatmaps using Ultralytics YOLOv8 🚀

## Introduction to Heatmaps

A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) transforms complex data into a vibrant, color-coded matrix. This visual tool employs a spectrum of colors to represent varying data values, where warmer hues indicate higher intensities and cooler tones signify lower values. Heatmaps excel in visualizing intricate data patterns, correlations, and anomalies, offering an accessible and engaging approach to data interpretation across diverse domains.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/4ezde5-nZZw"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Heatmaps using Ultralytics YOLOv8
</p>

## Why Choose Heatmaps for Data Analysis?

- **Intuitive Data Distribution Visualization:** Heatmaps simplify the comprehension of data concentration and distribution, converting complex datasets into easy-to-understand visual formats.
- **Efficient Pattern Detection:** By visualizing data in heatmap format, it becomes easier to spot trends, clusters, and outliers, facilitating quicker analysis and insights.
- **Enhanced Spatial Analysis and Decision-Making:** Heatmaps are instrumental in illustrating spatial relationships, aiding in decision-making processes in sectors such as business intelligence, environmental studies, and urban planning.

## Real World Applications

|                                                                 Transportation                                                                  |                                                                 Retail                                                                  |
|:-----------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------:|
| ![Ultralytics YOLOv8 Transportation Heatmap](https://github.com/RizwanMunawar/ultralytics/assets/62513924/288d7053-622b-4452-b4e4-1f41aeb764aa) | ![Ultralytics YOLOv8 Retail Heatmap](https://github.com/RizwanMunawar/ultralytics/assets/62513924/edef75ad-50a7-4c0a-be4a-a66cdfc12802) |
|                                                    Ultralytics YOLOv8 Transportation Heatmap                                                    |                                                    Ultralytics YOLOv8 Retail Heatmap                                                    |

!!! tip "Heatmap Configuration"

    - `heatmap_alpha`: Ensure this value is within the range (0.0 - 1.0).
    - `decay_factor`: Used for removing heatmap after an object is no longer in the frame, its value should also be in the range (0.0 - 1.0).

!!! Example "Heatmaps using Ultralytics YOLOv8 Example"

    === "Heatmap"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import heatmap

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Video writer

        video_writer = cv2.VideoWriter("heatmap_output.avi",

                                       cv2.VideoWriter_fourcc(*'mp4v'),

                                       fps,

                                       (w, h))


        # Init heatmap

        heatmap_obj = heatmap.Heatmap()

        heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,

                             imw=w,

                             imh=h,

                             view_img=True,

                             shape="circle")


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)


            im0 = heatmap_obj.generate_heatmap(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()


        ```


    === "Line Counting"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import heatmap

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Video writer

        video_writer = cv2.VideoWriter("heatmap_output.avi",

                                       cv2.VideoWriter_fourcc(*'mp4v'),

                                       fps,

                                       (w, h))


        line_points = [(20, 400), (1080, 404)]  # line for object counting


        # Init heatmap

        heatmap_obj = heatmap.Heatmap()

        heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,

                             imw=w,

                             imh=h,

                             view_img=True,

                             shape="circle",

                             count_reg_pts=line_points)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)


            im0 = heatmap_obj.generate_heatmap(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```


    === "Region Counting"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import heatmap

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Video writer

        video_writer = cv2.VideoWriter("heatmap_output.avi",

                                       cv2.VideoWriter_fourcc(*'mp4v'),

                                       fps,

                                       (w, h))


        # Define region points

        region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]


        # Init heatmap

        heatmap_obj = heatmap.Heatmap()

        heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,

                             imw=w,

                             imh=h,

                             view_img=True,

                             shape="circle",

                             count_reg_pts=region_points)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)


            im0 = heatmap_obj.generate_heatmap(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```


    === "Im0"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import heatmap

        import cv2


        model = YOLO("yolov8s.pt")   # YOLOv8 custom/pretrained model


        im0 = cv2.imread("path/to/image.png")  # path to image file

        h, w = im0.shape[:2]  # image height and width

        

        # Heatmap Init

        heatmap_obj = heatmap.Heatmap()

        heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,

                             imw=w,

                             imh=h,

                             view_img=True,

                             shape="circle")


        results = model.track(im0, persist=True)

        im0 = heatmap_obj.generate_heatmap(im0, tracks=results)

        cv2.imwrite("ultralytics_output.png", im0)

        ```


    === "Specific Classes"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import heatmap

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Video writer

        video_writer = cv2.VideoWriter("heatmap_output.avi",

                                       cv2.VideoWriter_fourcc(*'mp4v'),

                                       fps,

                                       (w, h))


        classes_for_heatmap = [0, 2]  # classes for heatmap


        # Init heatmap

        heatmap_obj = heatmap.Heatmap()

        heatmap_obj.set_args(colormap=cv2.COLORMAP_PARULA,

                             imw=w,

                             imh=h,

                             view_img=True,

                             shape="circle")


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False,

                                 classes=classes_for_heatmap)


            im0 = heatmap_obj.generate_heatmap(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```


### Arguments `set_args`



| Name                  | Type           | Default           | Description                                               |

|-----------------------|----------------|-------------------|-----------------------------------------------------------|

| `view_img`            | `bool`         | `False`           | Display the frame with heatmap                            |
| `colormap`            | `cv2.COLORMAP` | `None`            | cv2.COLORMAP for heatmap                                  |
| `imw`                 | `int`          | `None`            | Width of Heatmap                                          |
| `imh`                 | `int`          | `None`            | Height of Heatmap                                         |
| `heatmap_alpha`       | `float`        | `0.5`             | Heatmap alpha value                                       |
| `count_reg_pts`       | `list`         | `None`            | Object counting region points                             |
| `count_txt_thickness` | `int`          | `2`               | Count values text size                                    |
| `count_txt_color`     | `RGB Color`    | `(0, 0, 0)`       | Foreground color for Object counts text                   |
| `count_color`         | `RGB Color`    | `(255, 255, 255)` | Background color for Object counts text                   |
| `count_reg_color`     | `RGB Color`    | `(255, 0, 255)`   | Counting region color                                     |
| `region_thickness`    | `int`          | `5`               | Counting region thickness value                           |
| `decay_factor`        | `float`        | `0.99`            | Decay factor for heatmap area removal after specific time |
| `shape`               | `str`          | `circle`          | Heatmap shape for display "rect" or "circle" supported    |
| `line_dist_thresh`    | `int`          | `15`              | Euclidean Distance threshold for line counter             |

### Arguments `model.track`

| Name      | Type    | Default        | Description                                                 |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source`  | `im0`   | `None`         | source directory for images or videos                       |
| `persist` | `bool`  | `False`        | persisting tracks between frames                            |
| `tracker` | `str`   | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort'                    |
| `conf`    | `float` | `0.3`          | Confidence Threshold                                        |
| `iou`     | `float` | `0.5`          | IOU Threshold                                               |
| `classes` | `list`  | `None`         | filter results by class, i.e. classes=0, or classes=[0,2,3] |

### Heatmap COLORMAPs

| Colormap Name                   | Description                            |
|---------------------------------|----------------------------------------|
| `cv::COLORMAP_AUTUMN`           | Autumn color map                       |
| `cv::COLORMAP_BONE`             | Bone color map                         |
| `cv::COLORMAP_JET`              | Jet color map                          |
| `cv::COLORMAP_WINTER`           | Winter color map                       |
| `cv::COLORMAP_RAINBOW`          | Rainbow color map                      |
| `cv::COLORMAP_OCEAN`            | Ocean color map                        |
| `cv::COLORMAP_SUMMER`           | Summer color map                       |
| `cv::COLORMAP_SPRING`           | Spring color map                       |
| `cv::COLORMAP_COOL`             | Cool color map                         |
| `cv::COLORMAP_HSV`              | HSV (Hue, Saturation, Value) color map |
| `cv::COLORMAP_PINK`             | Pink color map                         |
| `cv::COLORMAP_HOT`              | Hot color map                          |
| `cv::COLORMAP_PARULA`           | Parula color map                       |
| `cv::COLORMAP_MAGMA`            | Magma color map                        |
| `cv::COLORMAP_INFERNO`          | Inferno color map                      |
| `cv::COLORMAP_PLASMA`           | Plasma color map                       |
| `cv::COLORMAP_VIRIDIS`          | Viridis color map                      |
| `cv::COLORMAP_CIVIDIS`          | Cividis color map                      |
| `cv::COLORMAP_TWILIGHT`         | Twilight color map                     |
| `cv::COLORMAP_TWILIGHT_SHIFTED` | Shifted Twilight color map             |
| `cv::COLORMAP_TURBO`            | Turbo color map                        |
| `cv::COLORMAP_DEEPGREEN`        | Deep Green color map                   |

These colormaps are commonly used for visualizing data with different color representations.