File size: 9,952 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---

comments: true
description: Learn how to use Ultralytics YOLO through Command Line, train models, run predictions and exports models to different formats easily using terminal commands.
keywords: Ultralytics, YOLO, CLI, train, validation, prediction, command line interface, YOLO CLI, YOLO terminal, model training, prediction, exporting
---


# Command Line Interface Usage

The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Mastering Ultralytics YOLOv8: CLI
</p>

!!! Example

    === "Syntax"


        Ultralytics `yolo` commands use the following syntax:

        ```bash

        yolo TASK MODE ARGS


        Where   TASK (optional) is one of [detect, segment, classify]

                MODE (required) is one of [train, val, predict, export, track]

                ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.

        ```

        See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg`


    === "Train"


        Train a detection model for 10 epochs with an initial learning_rate of 0.01

        ```bash

        yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

        ```


    === "Predict"


        Predict a YouTube video using a pretrained segmentation model at image size 320:

        ```bash

        yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

        ```


    === "Val"


        Val a pretrained detection model at batch-size 1 and image size 640:

        ```bash

        yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640

        ```


    === "Export"


        Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)

        ```bash

        yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128

        ```


    === "Special"


        Run special commands to see version, view settings, run checks and more:

        ```bash

        yolo help

        yolo checks

        yolo version

        yolo settings

        yolo copy-cfg

        yolo cfg

        ```


Where:

- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess the `TASK` from the model type.
- `MODE` (required) is one of `[train, val, predict, export, track]`
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
  GitHub [source](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml).

!!! Warning "Warning"

    Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.


    - `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` &nbsp; βœ…
    - `yolo predict model yolov8n.pt imgsz 640 conf 0.25` &nbsp; ❌
    - `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` &nbsp; ❌

## Train

Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page.

!!! Example "Example"

    === "Train"


        Start training YOLOv8n on COCO128 for 100 epochs at image-size 640.

        ```bash

        yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640

        ```


    === "Resume"


        Resume an interrupted training.

        ```bash

        yolo detect train resume model=last.pt

        ```


## Val

Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.

!!! Example "Example"

    === "Official"


        Validate an official YOLOv8n model.

        ```bash

        yolo detect val model=yolov8n.pt

        ```


    === "Custom"


        Validate a custom-trained model.

        ```bash

        yolo detect val model=path/to/best.pt

        ```


## Predict

Use a trained YOLOv8n model to run predictions on images.

!!! Example "Example"

    === "Official"


        Predict with an official YOLOv8n model.

        ```bash

        yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

        ```


    === "Custom"


        Predict with a custom model.

        ```bash

        yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'

        ```


## Export

Export a YOLOv8n model to a different format like ONNX, CoreML, etc.

!!! Example "Example"

    === "Official"


        Export an official YOLOv8n model to ONNX format.

        ```bash

        yolo export model=yolov8n.pt format=onnx

        ```


    === "Custom"


        Export a custom-trained model to ONNX format.

        ```bash

        yolo export model=path/to/best.pt format=onnx

        ```


Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`.

| Format                                                             | `format` Argument | Model                     | Metadata | Arguments                                           |
|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|
| [PyTorch](https://pytorch.org/)                                    | -                 | `yolov8n.pt`              | βœ…        | -                                                   |
| [TorchScript](https://pytorch.org/docs/stable/jit.html)            | `torchscript`     | `yolov8n.torchscript`     | βœ…        | `imgsz`, `optimize`                                 |
| [ONNX](https://onnx.ai/)                                           | `onnx`            | `yolov8n.onnx`            | βœ…        | `imgsz`, `half`, `dynamic`, `simplify`, `opset`     |
| [OpenVINO](../integrations/openvino.md)                            | `openvino`        | `yolov8n_openvino_model/` | βœ…        | `imgsz`, `half`, `int8`                             |
| [TensorRT](https://developer.nvidia.com/tensorrt)                  | `engine`          | `yolov8n.engine`          | βœ…        | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
| [CoreML](https://github.com/apple/coremltools)                     | `coreml`          | `yolov8n.mlpackage`       | βœ…        | `imgsz`, `half`, `int8`, `nms`                      |
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model)      | `saved_model`     | `yolov8n_saved_model/`    | βœ…        | `imgsz`, `keras`, `int8`                            |
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb`              | `yolov8n.pb`              | ❌        | `imgsz`                                             |
| [TF Lite](https://www.tensorflow.org/lite)                         | `tflite`          | `yolov8n.tflite`          | βœ…        | `imgsz`, `half`, `int8`                             |
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/)         | `edgetpu`         | `yolov8n_edgetpu.tflite`  | βœ…        | `imgsz`                                             |
| [TF.js](https://www.tensorflow.org/js)                             | `tfjs`            | `yolov8n_web_model/`      | βœ…        | `imgsz`, `half`, `int8`                             |
| [PaddlePaddle](https://github.com/PaddlePaddle)                    | `paddle`          | `yolov8n_paddle_model/`   | βœ…        | `imgsz`                                             |
| [NCNN](https://github.com/Tencent/ncnn)                            | `ncnn`            | `yolov8n_ncnn_model/`     | βœ…        | `imgsz`, `half`                                     |

## Overriding default arguments

Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs.

!!! Tip ""

    === "Train"


        Train a detection model for `10 epochs` with `learning_rate` of `0.01`

        ```bash

        yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

        ```


    === "Predict"


        Predict a YouTube video using a pretrained segmentation model at image size 320:

        ```bash

        yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

        ```


    === "Val"


        Validate a pretrained detection model at batch-size 1 and image size 640:

        ```bash

        yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640

        ```


## Overriding default config file

You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, i.e. `cfg=custom.yaml`.

To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command.

This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example:

!!! Example

    === "CLI"


        ```bash

        yolo copy-cfg

        yolo cfg=default_copy.yaml imgsz=320

        ```