Spaces:
Running
Running
AAAAAAyq
commited on
Commit
·
ca3609f
1
Parent(s):
d1be458
Update the interface layout
Browse files
app.py
CHANGED
|
@@ -4,22 +4,45 @@ import matplotlib.pyplot as plt
|
|
| 4 |
import gradio as gr
|
| 5 |
import cv2
|
| 6 |
import torch
|
| 7 |
-
# import queue
|
| 8 |
-
# import threading
|
| 9 |
from PIL import Image
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
if isinstance(annotations[0],dict):
|
| 17 |
annotations = [annotation['segmentation'] for annotation in annotations]
|
| 18 |
|
| 19 |
original_h = image.height
|
| 20 |
original_w = image.width
|
| 21 |
-
# fig = plt.figure(figsize=(10, 10))
|
| 22 |
-
# plt.imshow(image)
|
| 23 |
if high_quality == True:
|
| 24 |
if isinstance(annotations[0],torch.Tensor):
|
| 25 |
annotations = np.array(annotations.cpu())
|
|
@@ -57,10 +80,9 @@ def fast_process(annotations, image, high_quality, device):
|
|
| 57 |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 58 |
for contour in contours:
|
| 59 |
contour_all.append(contour)
|
| 60 |
-
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
| 61 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 62 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
| 63 |
-
# plt.imshow(contour_mask)
|
| 64 |
image = image.convert('RGBA')
|
| 65 |
|
| 66 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
@@ -71,10 +93,6 @@ def fast_process(annotations, image, high_quality, device):
|
|
| 71 |
image.paste(overlay_contour, (0, 0), overlay_contour)
|
| 72 |
|
| 73 |
return image
|
| 74 |
-
# plt.axis('off')
|
| 75 |
-
# plt.tight_layout()
|
| 76 |
-
# return fig
|
| 77 |
-
|
| 78 |
|
| 79 |
# CPU post process
|
| 80 |
def fast_show_mask(annotation, ax, bbox=None,
|
|
@@ -111,7 +129,6 @@ def fast_show_mask(annotation, ax, bbox=None,
|
|
| 111 |
|
| 112 |
if retinamask==False:
|
| 113 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
| 114 |
-
# ax.imshow(mask)
|
| 115 |
|
| 116 |
return mask
|
| 117 |
|
|
@@ -145,19 +162,12 @@ def fast_show_mask_gpu(annotation, ax,
|
|
| 145 |
if points is not None:
|
| 146 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
| 147 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
| 148 |
-
# ax.imshow(mask_cpu)
|
| 149 |
return mask_cpu
|
| 150 |
|
| 151 |
|
| 152 |
-
# # 预测队列
|
| 153 |
-
# prediction_queue = queue.Queue(maxsize=5)
|
| 154 |
-
|
| 155 |
-
# # 线程锁
|
| 156 |
-
# lock = threading.Lock()
|
| 157 |
-
|
| 158 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 159 |
|
| 160 |
-
def
|
| 161 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 162 |
|
| 163 |
# Thanks for the suggestion by hysts in HuggingFace.
|
|
@@ -167,9 +177,10 @@ def predict(input, input_size=1024, high_visual_quality=True):
|
|
| 167 |
new_h = int(h * scale)
|
| 168 |
input = input.resize((new_w, new_h))
|
| 169 |
|
| 170 |
-
results = model(input, device=device, retina_masks=True, iou=
|
| 171 |
fig = fast_process(annotations=results[0].masks.data,
|
| 172 |
-
|
|
|
|
| 173 |
return fig
|
| 174 |
|
| 175 |
# input_size=1024
|
|
@@ -182,22 +193,91 @@ def predict(input, input_size=1024, high_visual_quality=True):
|
|
| 182 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
| 183 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import cv2
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
# Load the pre-trained model
|
| 10 |
+
model = YOLO('checkpoints/FastSAM.pt')
|
| 11 |
|
| 12 |
+
# Description
|
| 13 |
+
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
|
| 14 |
|
| 15 |
+
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
|
| 16 |
+
|
| 17 |
+
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
|
| 18 |
+
|
| 19 |
+
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
|
| 20 |
+
|
| 21 |
+
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
|
| 22 |
+
|
| 23 |
+
📣 You can also obtain the segmentation results of any Image through this Colab: [](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
|
| 24 |
+
|
| 25 |
+
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
|
| 26 |
+
|
| 27 |
+
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
|
| 28 |
+
|
| 29 |
+
"""
|
| 30 |
|
| 31 |
+
examples = [["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
| 32 |
+
["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
| 33 |
+
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
| 34 |
+
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"]]
|
| 35 |
+
|
| 36 |
+
default_example = examples[5]
|
| 37 |
+
|
| 38 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
| 39 |
+
|
| 40 |
+
def fast_process(annotations, image, high_quality, device, scale):
|
| 41 |
if isinstance(annotations[0],dict):
|
| 42 |
annotations = [annotation['segmentation'] for annotation in annotations]
|
| 43 |
|
| 44 |
original_h = image.height
|
| 45 |
original_w = image.width
|
|
|
|
|
|
|
| 46 |
if high_quality == True:
|
| 47 |
if isinstance(annotations[0],torch.Tensor):
|
| 48 |
annotations = np.array(annotations.cpu())
|
|
|
|
| 80 |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 81 |
for contour in contours:
|
| 82 |
contour_all.append(contour)
|
| 83 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
| 84 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
| 85 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
|
|
| 86 |
image = image.convert('RGBA')
|
| 87 |
|
| 88 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
|
|
| 93 |
image.paste(overlay_contour, (0, 0), overlay_contour)
|
| 94 |
|
| 95 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# CPU post process
|
| 98 |
def fast_show_mask(annotation, ax, bbox=None,
|
|
|
|
| 129 |
|
| 130 |
if retinamask==False:
|
| 131 |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
| 132 |
|
| 133 |
return mask
|
| 134 |
|
|
|
|
| 162 |
if points is not None:
|
| 163 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
| 164 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
|
|
|
| 165 |
return mask_cpu
|
| 166 |
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 169 |
|
| 170 |
+
def segment_image(input, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
|
| 171 |
input_size = int(input_size) # 确保 imgsz 是整数
|
| 172 |
|
| 173 |
# Thanks for the suggestion by hysts in HuggingFace.
|
|
|
|
| 177 |
new_h = int(h * scale)
|
| 178 |
input = input.resize((new_w, new_h))
|
| 179 |
|
| 180 |
+
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
|
| 181 |
fig = fast_process(annotations=results[0].masks.data,
|
| 182 |
+
image=input, high_quality=high_visual_quality,
|
| 183 |
+
device=device, scale=(1024 // input_size))
|
| 184 |
return fig
|
| 185 |
|
| 186 |
# input_size=1024
|
|
|
|
| 193 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
| 194 |
# image=input, high_quality=high_quality_visual, device=device)
|
| 195 |
|
| 196 |
+
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
|
| 197 |
+
|
| 198 |
+
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
|
| 199 |
+
|
| 200 |
+
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size')
|
| 201 |
+
|
| 202 |
+
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
| 203 |
+
with gr.Row():
|
| 204 |
+
# Title
|
| 205 |
+
gr.Markdown(title)
|
| 206 |
+
# # # Description
|
| 207 |
+
# # gr.Markdown(description)
|
| 208 |
+
|
| 209 |
+
# Images
|
| 210 |
+
with gr.Row(variant="panel"):
|
| 211 |
+
with gr.Column(scale=1):
|
| 212 |
+
cond_img.render()
|
| 213 |
+
|
| 214 |
+
with gr.Column(scale=1):
|
| 215 |
+
segm_img.render()
|
| 216 |
+
|
| 217 |
+
# Submit & Clear
|
| 218 |
+
with gr.Row():
|
| 219 |
+
with gr.Column():
|
| 220 |
+
input_size_slider.render()
|
| 221 |
+
|
| 222 |
+
with gr.Row():
|
| 223 |
+
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
|
| 224 |
+
|
| 225 |
+
with gr.Column():
|
| 226 |
+
segment_btn = gr.Button("Segment Anything", variant='primary')
|
| 227 |
+
|
| 228 |
+
# with gr.Column():
|
| 229 |
+
# clear_btn = gr.Button("Clear", variant="primary")
|
| 230 |
+
|
| 231 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
| 232 |
+
gr.Examples(examples=examples,
|
| 233 |
+
inputs=[cond_img],
|
| 234 |
+
outputs=segm_img,
|
| 235 |
+
fn=segment_image,
|
| 236 |
+
cache_examples=True,
|
| 237 |
+
examples_per_page=4)
|
| 238 |
+
# gr.Markdown("Try some of the examples below ⬇️")
|
| 239 |
+
# gr.Examples(examples=examples,
|
| 240 |
+
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
| 241 |
+
# outputs=output,
|
| 242 |
+
# fn=segment_image,
|
| 243 |
+
# examples_per_page=4)
|
| 244 |
+
|
| 245 |
+
with gr.Column():
|
| 246 |
+
with gr.Accordion("Advanced options", open=False):
|
| 247 |
+
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
|
| 248 |
+
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
|
| 249 |
+
|
| 250 |
+
# Description
|
| 251 |
+
gr.Markdown(description)
|
| 252 |
+
|
| 253 |
+
segment_btn.click(segment_image,
|
| 254 |
+
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
|
| 255 |
+
outputs=segm_img)
|
| 256 |
+
|
| 257 |
+
# def clear():
|
| 258 |
+
# return None, None
|
| 259 |
+
|
| 260 |
+
# clear_btn.click(fn=clear, inputs=None, outputs=None)
|
| 261 |
+
|
| 262 |
+
demo.queue()
|
| 263 |
+
demo.launch()
|
| 264 |
+
|
| 265 |
+
# app_interface = gr.Interface(fn=predict,
|
| 266 |
+
# inputs=[gr.Image(type='pil'),
|
| 267 |
+
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
| 268 |
+
# gr.components.Checkbox(value=True, label='high_visual_quality')],
|
| 269 |
+
# # outputs=['plot'],
|
| 270 |
+
# outputs=gr.Image(type='pil'),
|
| 271 |
+
# # examples=[["assets/sa_8776.jpg"]],
|
| 272 |
+
# # # ["assets/sa_1309.jpg", 1024]],
|
| 273 |
+
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
| 274 |
+
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
| 275 |
+
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
| 276 |
+
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
| 277 |
+
# cache_examples=True,
|
| 278 |
+
# title="Fast Segment Anything (Everything mode)"
|
| 279 |
+
# )
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# app_interface.queue(concurrency_count=1, max_size=20)
|
| 283 |
+
# app_interface.launch()
|