#extension GL_EXT_control_flow_attributes : enable #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_shader_8bit_storage : require #ifdef MUL_MAT_ID #define EXPERT_COUNT 8 #endif #include "types.comp" layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];}; layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID layout (binding = 3) readonly buffer IDS {int data_ids[];}; #endif #include "dequant_funcs.comp" layout (push_constant) uniform parameter { uint ncols; uint stride_a; uint stride_b; uint stride_d; uint batch_stride_a; uint batch_stride_b; uint batch_stride_d; #ifdef MUL_MAT_ID uint nei0; uint ne11; #else uint ne02; uint ne12; uint broadcast2; uint broadcast3; #endif } p; void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) { #ifdef MUL_MAT_ID const uint expert_idx = gl_GlobalInvocationID.y; #else const uint batch_idx = gl_GlobalInvocationID.y; #endif #ifndef MUL_MAT_ID uint batch_idx_a = 0; if (batch_idx != 0) { const uint i13 = batch_idx / p.ne12; const uint i12 = batch_idx % p.ne12; const uint i03 = i13 / p.broadcast3; const uint i02 = i12 / p.broadcast2; batch_idx_a = i03 * p.ne02 + i02; } #else const uint expert_id = data_ids[expert_idx]; #endif a_offset = #ifdef MUL_MAT_ID expert_id * p.batch_stride_a; #else batch_idx_a * p.batch_stride_a; #endif b_offset = #ifdef MUL_MAT_ID (expert_idx % p.ne11) * p.stride_b; #else batch_idx * p.batch_stride_b; #endif d_offset = #ifdef MUL_MAT_ID expert_idx * p.stride_d; #else batch_idx * p.batch_stride_d; #endif } layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; layout (constant_id = 2) const uint NUM_COLS = 1; shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE]; void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) { // sum up partial sums and write back result [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[j][n][tid] = temp[j][n]; } } barrier(); [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { tmpsh[j][n][tid] += tmpsh[j][n][tid + s]; } } } barrier(); } if (tid == 0) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint n = 0; n < num_rows; ++n) { data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]); } } } }