#version 450 #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #include "mul_mat_vec_base.comp" layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; #if !defined(DATA_A_F32) && !defined(DATA_A_F16) #define K_PER_ITER 8 #else #define K_PER_ITER 2 #endif uint a_offset, b_offset, d_offset, y_offset; void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter) { [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { const uint col = i*BLOCK_SIZE + K_PER_ITER*tid; const uint iqs = (col%QUANT_K)/QUANT_R; // quant index const uint iybs = col - col%QUANT_K; // y block start index #if K_PER_ITER == 8 #if QUANT_R == 2 const vec4 bv02 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]); const vec4 bv13 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4]); const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y); const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w); #else const vec4 bv0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]); const vec4 bv1 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4 + 1]); #endif #else // Check if the second of the pair of elements is OOB, and don't fetch B or // accumulate it. We still fetch a pair of elements for A, which is fine for // quantized formats since they'll be within the same block. We should // probably skip fetching the second element for F16/F32, but as of now we // still do. const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols); FLOAT_TYPE b0 = 0, b1 = 0; b0 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs]); if (!OOB) { b1 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs + y_offset]); } #endif uint ibi = first_row*p.ncols; [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib = (ibi + col)/QUANT_K; // block index ibi += p.ncols; #if K_PER_ITER == 8 vec4 v = dequantize4(ib, iqs, a_offset); vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset); const vec2 dm = get_dm(ib, a_offset); if (dm.y != 0) { // quant has min component v = v * dm.x + dm.y; v2 = v2 * dm.x + dm.y; } // matrix multiplication FLOAT_TYPE rowtmp = dot(bv0, v); rowtmp += dot(bv1, v2); if (dm.y == 0) rowtmp *= dm.x; temp[j][n] += rowtmp; #else const vec2 v = dequantize(ib, iqs, a_offset); // matrix multiplication temp[j][n] = fma(FLOAT_TYPE(v.x), b0, temp[j][n]); if (!OOB) { temp[j][n] = fma(FLOAT_TYPE(v.y), b1, temp[j][n]); } #endif } } } void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { const uint tid = gl_LocalInvocationID.x; get_offsets(a_offset, b_offset, d_offset); a_offset /= QUANT_K; y_offset = QUANT_R == 1 ? 1 : QUANT_K/2; FLOAT_TYPE temp[NUM_COLS][NUM_ROWS]; [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) { [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { temp[j][i] = FLOAT_TYPE(0); } } uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE); if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) { num_iters++; } int unroll_count = 4; uint unrolled_iters = num_iters & ~(unroll_count - 1); uint i = 0; while (i < unrolled_iters) { // Manually partially unroll the loop [[unroll]] for (uint k = 0; k < unroll_count; ++k) { iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false); i++; } } unroll_count = 2; unrolled_iters = num_iters & ~(unroll_count - 1); while (i < unrolled_iters) { // Manually partially unroll the loop [[unroll]] for (uint k = 0; k < unroll_count; ++k) { iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false); i++; } } while (i < num_iters) { iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true); i++; } reduce_result(temp, d_offset, first_row, num_rows, tid); } void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); #if defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_NL) init_iq_shmem(gl_WorkGroupSize); #endif // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { if (first_row >= p.stride_d) { return; } compute_outputs(first_row, p.stride_d - first_row); } }