Spaces:
Build error
Build error
template <u_int HEAD_SIZE> | |
static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale, | |
const float * k, const float * v, const float * r, const float * td, | |
const float * s, float * dst) { | |
const u_int head_size = HEAD_SIZE; | |
const u_int state_size = C * head_size; | |
const u_int n_seq_tokens = T / B; | |
sycl::range<1> block_dims((C / H)); | |
sycl::range<1> grid_dims((B * H)); | |
stream->submit([&](sycl::handler & cgh) { | |
/* local memory accessors*/ | |
auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); | |
auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); | |
auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh); | |
cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) { | |
u_int tid = item.get_local_id(0); | |
u_int bid = item.get_group(0); | |
u_int batch_i = bid / H; | |
u_int head_i = bid % H; | |
float state[head_size]; | |
for (u_int i = 0; i < head_size; i++) { | |
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; | |
} | |
for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; | |
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { | |
item.barrier(sycl::access::fence_space::local_space); //sync threads | |
_k[tid] = k[t]; | |
_r[tid] = r[t]; | |
_td[tid] = td[t]; | |
item.barrier(sycl::access::fence_space::local_space); //sync threads | |
const float _v = v[t]; | |
float y = 0; | |
for (u_int j = 0; j < head_size; j += 4) { | |
const sycl::float4 & k = (sycl::float4 &) (_k[j]); | |
const sycl::float4 & r = (sycl::float4 &) (_r[j]); | |
const sycl::float4 & td = (sycl::float4 &) (_td[j]); | |
sycl::float4 & s = (sycl::float4 &) (state[j]); | |
sycl::float4 kv; | |
kv.x() = k.x() * _v; | |
kv.y() = k.y() * _v; | |
kv.z() = k.z() * _v; | |
kv.w() = k.w() * _v; | |
s.x() = s.x() * td.x() + kv.x(); | |
s.y() = s.y() * td.y() + kv.y(); | |
s.z() = s.z() * td.z() + kv.z(); | |
s.w() = s.w() * td.w() + kv.w(); | |
y += r.x() * s.x(); | |
y += r.y() * s.y(); | |
y += r.z() * s.z(); | |
y += r.w() * s.w(); | |
} | |
dst[t] = y * scale; | |
} | |
for (u_int i = 0; i < head_size; i++) { | |
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; | |
} | |
}); | |
}); | |
} | |
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { | |
const float * k_d = static_cast<const float *>(dst->src[0]->data); | |
const float * v_d = static_cast<const float *>(dst->src[1]->data); | |
const float * r_d = static_cast<const float *>(dst->src[2]->data); | |
const float * td_d = static_cast<const float *>(dst->src[3]->data); | |
const float * s_d = static_cast<const float *>(dst->src[4]->data); | |
const int64_t B = dst->src[4]->ne[1]; | |
const int64_t T = dst->src[0]->ne[2]; | |
const int64_t C = dst->ne[0]; | |
const int64_t H = dst->src[0]->ne[1]; | |
dpct::queue_ptr stream = ctx.stream(); | |
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32); | |
GGML_ASSERT(C % H == 0); | |
GGML_ASSERT(C / H == 64 || C / H == 128); | |
float scale; | |
memcpy(&scale, dst->op_params, sizeof(float)); | |
float * dst_d = (float *) dst->data; | |
if (C / H == 64) { | |
gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); | |
} else { | |
gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); | |
} | |
} | |