Spaces:
Build error
Build error
#include "common.cuh" | |
#include "gla.cuh" | |
template<int HEAD_SIZE> | |
static __global__ void gated_linear_attn_f32(const int B, const int T, const int C, const int H, const float scale, | |
const float * k, const float * v, const float * r, const float * td, const float * s, float * dst) { | |
const int tid = threadIdx.x; | |
const int bid = blockIdx.x; | |
const int head_size = HEAD_SIZE; | |
const int batch_i = bid / H; | |
const int head_i = bid % H; | |
const int state_size = C * head_size; | |
const int n_seq_tokens = T / B; | |
float state[head_size]; | |
__shared__ float _k[head_size], _r[head_size], _td[head_size]; | |
#pragma unroll | |
for (int i = 0; i < head_size; i++) { | |
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; | |
} | |
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { | |
__syncthreads(); | |
_k[tid] = k[t]; | |
_r[tid] = r[t]; | |
_td[tid] = td[t]; | |
__syncthreads(); | |
const float _v = v[t]; | |
float y = 0; | |
for (int j = 0; j < head_size; j += 4) { | |
const float4 & k = (float4 &)(_k[j]); | |
const float4 & r = (float4 &)(_r[j]); | |
const float4 & td = (float4 &)(_td[j]); | |
float4 & s = (float4 &)(state[j]); | |
float4 kv; | |
kv.x = k.x * _v; | |
kv.y = k.y * _v; | |
kv.z = k.z * _v; | |
kv.w = k.w * _v; | |
s.x = s.x * td.x + kv.x; | |
s.y = s.y * td.y + kv.y; | |
s.z = s.z * td.z + kv.z; | |
s.w = s.w * td.w + kv.w; | |
y += r.x * s.x; | |
y += r.y * s.y; | |
y += r.z * s.z; | |
y += r.w * s.w; | |
} | |
dst[t] = y * scale; | |
} | |
#pragma unroll | |
for (int i = 0; i < head_size; i++) { | |
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; | |
} | |
} | |
void ggml_cuda_op_gated_linear_attn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const float * k_d = (const float *)dst->src[0]->data; | |
const float * v_d = (const float *)dst->src[1]->data; | |
const float * r_d = (const float *)dst->src[2]->data; | |
const float * td_d = (const float *)dst->src[3]->data; | |
const float * s_d = (const float *)dst->src[4]->data; | |
const int64_t B = dst->src[4]->ne[1]; | |
const int64_t T = dst->src[0]->ne[2]; | |
const int64_t C = dst->ne[0]; | |
const int64_t H = dst->src[0]->ne[1]; | |
float scale; | |
memcpy(&scale, (float*)dst->op_params, sizeof(float)); | |
float * dst_d = (float *)dst->data; | |
cudaStream_t stream = ctx.stream(); | |
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32); | |
GGML_ASSERT(C % H == 0); | |
GGML_ASSERT(C / H == 64 || C / H == 128); | |
if (C / H == 64) { | |
gated_linear_attn_f32<64><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); | |
} else { | |
gated_linear_attn_f32<128><<<B * H, C / H, 0, stream>>>(B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d); | |
} | |
} | |