Spaces:
Build error
Build error
# convert the https://huggingface.co/novateur/WavTokenizer-large-speech-75token to HF format | |
# the goal is to be able to reuse the convert_hf_to_gguf.py after that to create a GGUF file with the WavTokenizer decoder | |
# | |
# TODO: this script is LLM-generated and probably very inefficient and should be rewritten | |
import torch | |
import json | |
import os | |
import sys | |
import re | |
from safetensors.torch import save_file | |
# default | |
model_path = './model.pt'; | |
# read from CLI | |
if len(sys.argv) > 1: | |
model_path = sys.argv[1] | |
# get the directory of the input model | |
path_dst = os.path.dirname(model_path) | |
print(f"Loading model from {model_path}") | |
model = torch.load(model_path, map_location='cpu') | |
#print(model) | |
# print all keys | |
for key in model.keys(): | |
print(key) | |
if key == 'hyper_parameters': | |
#print(model[key]) | |
# dump as json pretty | |
print(json.dumps(model[key], indent=4)) | |
#if key != 'state_dict' and key != 'optimizer_states': | |
# print(model[key]) | |
# Check if the loaded model is a state_dict or a model instance | |
if isinstance(model, torch.nn.Module): | |
state_dict = model.state_dict() | |
else: | |
state_dict = model | |
# Print the structure of the state_dict to understand its format | |
print("State dictionary keys:") | |
for key in state_dict.keys(): | |
print(key) | |
# Ensure the state_dict is flat and contains only torch.Tensor objects | |
def flatten_state_dict(state_dict, parent_key='', sep='.'): | |
items = [] | |
items_new = [] | |
for k, v in state_dict.items(): | |
new_key = f"{parent_key}{sep}{k}" if parent_key else k | |
if isinstance(v, torch.Tensor): | |
items.append((new_key, v)) | |
elif isinstance(v, dict): | |
items.extend(flatten_state_dict(v, new_key, sep=sep).items()) | |
return dict(items) | |
size_total_mb = 0 | |
for key, value in list(items): | |
# keep only what we need for inference | |
if not key.startswith('state_dict.feature_extractor.encodec.quantizer.') and \ | |
not key.startswith('state_dict.backbone.') and \ | |
not key.startswith('state_dict.head.out'): | |
print('Skipping key: ', key) | |
continue | |
new_key = key | |
new_key = new_key.replace('state_dict.', '') | |
new_key = new_key.replace('pos_net', 'posnet') | |
# check if matches "backbone.posnet.%d.bias" or "backbone.posnet.%d.weight" | |
if new_key.startswith("backbone.posnet."): | |
match = re.match(r"backbone\.posnet\.(\d+)\.(bias|weight)", new_key) | |
if match: | |
new_key = f"backbone.posnet.{match.group(1)}.norm.{match.group(2)}" | |
# "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed" -> "backbone.embedding.weight" | |
if new_key == "feature_extractor.encodec.quantizer.vq.layers.0._codebook.embed": | |
new_key = "backbone.embedding.weight" | |
# these are the only rows used | |
# ref: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/wav_tokenizer/audio_codec.py#L100 | |
if new_key.endswith("norm.scale.weight"): | |
new_key = new_key.replace("norm.scale.weight", "norm.weight") | |
value = value[0] | |
if new_key.endswith("norm.shift.weight"): | |
new_key = new_key.replace("norm.shift.weight", "norm.bias") | |
value = value[0] | |
if new_key.endswith("gamma"): | |
new_key = new_key.replace("gamma", "gamma.weight") | |
# convert from 1D [768] to 2D [768, 1] so that ggml_add can broadcast the bias | |
if (new_key.endswith("norm.weight") or new_key.endswith("norm1.weight") or new_key.endswith("norm2.weight") or new_key.endswith(".bias")) and (new_key.startswith("backbone.posnet") or new_key.startswith("backbone.embed.bias")): | |
value = value.unsqueeze(1) | |
if new_key.endswith("dwconv.bias"): | |
value = value.unsqueeze(1) | |
size_mb = value.element_size() * value.nelement() / (1024 * 1024) | |
print(f"{size_mb:8.2f} MB - {new_key}: {value.shape}") | |
size_total_mb += size_mb | |
#print(key, '->', new_key, ': ', value) | |
#print(key, '->', new_key) | |
items_new.append((new_key, value)) | |
print(f"Total size: {size_total_mb:8.2f} MB") | |
return dict(items_new) | |
flattened_state_dict = flatten_state_dict(state_dict) | |
# Convert the model to the safetensors format | |
output_path = path_dst + '/model.safetensors' | |
save_file(flattened_state_dict, output_path) | |
print(f"Model has been successfully converted and saved to {output_path}") | |
# Calculate the total size of the .safetensors file | |
total_size = os.path.getsize(output_path) | |
# Create the weight map | |
weight_map = { | |
"model.safetensors": ["*"] # Assuming all weights are in one file | |
} | |
# Create metadata for the index.json file | |
metadata = { | |
"total_size": total_size, | |
"weight_map": weight_map | |
} | |
# Save the metadata to index.json | |
index_path = path_dst + '/index.json' | |
with open(index_path, 'w') as f: | |
json.dump(metadata, f, indent=4) | |
print(f"Metadata has been saved to {index_path}") | |
config = { | |
"architectures": [ | |
"WavTokenizerDec" | |
], | |
"hidden_size": 1282, | |
"n_embd_features": 512, | |
"n_ff": 2304, | |
"vocab_size": 4096, | |
"n_head": 1, | |
"layer_norm_epsilon": 1e-6, | |
"group_norm_epsilon": 1e-6, | |
"group_norm_groups": 32, | |
"max_position_embeddings": 8192, # ? | |
"n_layer": 12, | |
"posnet": { | |
"n_embd": 768, | |
"n_layer": 6 | |
}, | |
"convnext": { | |
"n_embd": 768, | |
"n_layer": 12 | |
}, | |
} | |
with open(path_dst + '/config.json', 'w') as f: | |
json.dump(config, f, indent=4) | |
print(f"Config has been saved to {path_dst + 'config.json'}") | |