Spaces:
Build error
Build error
[[noreturn]] static void sigint_handler(int) { | |
printf("\n" LOG_COL_DEFAULT); | |
exit(0); // not ideal, but it's the only way to guarantee exit in all cases | |
} | |
GGML_ATTRIBUTE_FORMAT(1, 2) | |
static std::string fmt(const char * fmt, ...) { | |
va_list ap; | |
va_list ap2; | |
va_start(ap, fmt); | |
va_copy(ap2, ap); | |
const int size = vsnprintf(NULL, 0, fmt, ap); | |
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT | |
std::string buf; | |
buf.resize(size); | |
const int size2 = vsnprintf(const_cast<char *>(buf.data()), buf.size() + 1, fmt, ap2); | |
GGML_ASSERT(size2 == size); | |
va_end(ap2); | |
va_end(ap); | |
return buf; | |
} | |
GGML_ATTRIBUTE_FORMAT(1, 2) | |
static int printe(const char * fmt, ...) { | |
va_list args; | |
va_start(args, fmt); | |
const int ret = vfprintf(stderr, fmt, args); | |
va_end(args); | |
return ret; | |
} | |
static std::string strftime_fmt(const char * fmt, const std::tm & tm) { | |
std::ostringstream oss; | |
oss << std::put_time(&tm, fmt); | |
return oss.str(); | |
} | |
class Opt { | |
public: | |
int init(int argc, const char ** argv) { | |
ctx_params = llama_context_default_params(); | |
model_params = llama_model_default_params(); | |
context_size_default = ctx_params.n_batch; | |
ngl_default = model_params.n_gpu_layers; | |
common_params_sampling sampling; | |
temperature_default = sampling.temp; | |
if (argc < 2) { | |
printe("Error: No arguments provided.\n"); | |
print_help(); | |
return 1; | |
} | |
// Parse arguments | |
if (parse(argc, argv)) { | |
printe("Error: Failed to parse arguments.\n"); | |
print_help(); | |
return 1; | |
} | |
// If help is requested, show help and exit | |
if (help) { | |
print_help(); | |
return 2; | |
} | |
ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default; | |
ctx_params.n_ctx = ctx_params.n_batch; | |
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default; | |
temperature = temperature >= 0 ? temperature : temperature_default; | |
return 0; // Success | |
} | |
llama_context_params ctx_params; | |
llama_model_params model_params; | |
std::string model_; | |
std::string user; | |
bool use_jinja = false; | |
int context_size = -1, ngl = -1; | |
float temperature = -1; | |
bool verbose = false; | |
private: | |
int context_size_default = -1, ngl_default = -1; | |
float temperature_default = -1; | |
bool help = false; | |
bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) { | |
return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0; | |
} | |
int handle_option_with_value(int argc, const char ** argv, int & i, int & option_value) { | |
if (i + 1 >= argc) { | |
return 1; | |
} | |
option_value = std::atoi(argv[++i]); | |
return 0; | |
} | |
int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) { | |
if (i + 1 >= argc) { | |
return 1; | |
} | |
option_value = std::atof(argv[++i]); | |
return 0; | |
} | |
int parse(int argc, const char ** argv) { | |
bool options_parsing = true; | |
for (int i = 1, positional_args_i = 0; i < argc; ++i) { | |
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) { | |
if (handle_option_with_value(argc, argv, i, context_size) == 1) { | |
return 1; | |
} | |
} else if (options_parsing && | |
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) { | |
if (handle_option_with_value(argc, argv, i, ngl) == 1) { | |
return 1; | |
} | |
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) { | |
if (handle_option_with_value(argc, argv, i, temperature) == 1) { | |
return 1; | |
} | |
} else if (options_parsing && | |
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) { | |
verbose = true; | |
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) { | |
use_jinja = true; | |
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) { | |
help = true; | |
return 0; | |
} else if (options_parsing && strcmp(argv[i], "--") == 0) { | |
options_parsing = false; | |
} else if (positional_args_i == 0) { | |
if (!argv[i][0] || argv[i][0] == '-') { | |
return 1; | |
} | |
++positional_args_i; | |
model_ = argv[i]; | |
} else if (positional_args_i == 1) { | |
++positional_args_i; | |
user = argv[i]; | |
} else { | |
user += " " + std::string(argv[i]); | |
} | |
} | |
if (model_.empty()){ | |
return 1; | |
} | |
return 0; | |
} | |
void print_help() const { | |
printf( | |
"Description:\n" | |
" Runs a llm\n" | |
"\n" | |
"Usage:\n" | |
" llama-run [options] model [prompt]\n" | |
"\n" | |
"Options:\n" | |
" -c, --context-size <value>\n" | |
" Context size (default: %d)\n" | |
" -n, -ngl, --ngl <value>\n" | |
" Number of GPU layers (default: %d)\n" | |
" --temp <value>\n" | |
" Temperature (default: %.1f)\n" | |
" -v, --verbose, --log-verbose\n" | |
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n" | |
" -h, --help\n" | |
" Show help message\n" | |
"\n" | |
"Commands:\n" | |
" model\n" | |
" Model is a string with an optional prefix of \n" | |
" huggingface:// (hf://), ollama://, https:// or file://.\n" | |
" If no protocol is specified and a file exists in the specified\n" | |
" path, file:// is assumed, otherwise if a file does not exist in\n" | |
" the specified path, ollama:// is assumed. Models that are being\n" | |
" pulled are downloaded with .partial extension while being\n" | |
" downloaded and then renamed as the file without the .partial\n" | |
" extension when complete.\n" | |
"\n" | |
"Examples:\n" | |
" llama-run llama3\n" | |
" llama-run ollama://granite-code\n" | |
" llama-run ollama://smollm:135m\n" | |
" llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n" | |
" llama-run " | |
"huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n" | |
" llama-run https://example.com/some-file1.gguf\n" | |
" llama-run some-file2.gguf\n" | |
" llama-run file://some-file3.gguf\n" | |
" llama-run --ngl 999 some-file4.gguf\n" | |
" llama-run --ngl 999 some-file5.gguf Hello World\n", | |
context_size_default, ngl_default, temperature_default); | |
} | |
}; | |
struct progress_data { | |
size_t file_size = 0; | |
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now(); | |
bool printed = false; | |
}; | |
static int get_terminal_width() { | |
CONSOLE_SCREEN_BUFFER_INFO csbi; | |
GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi); | |
return csbi.srWindow.Right - csbi.srWindow.Left + 1; | |
struct winsize w; | |
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w); | |
return w.ws_col; | |
} | |
class File { | |
public: | |
FILE * file = nullptr; | |
FILE * open(const std::string & filename, const char * mode) { | |
file = fopen(filename.c_str(), mode); | |
return file; | |
} | |
int lock() { | |
if (file) { | |
fd = _fileno(file); | |
hFile = (HANDLE) _get_osfhandle(fd); | |
if (hFile == INVALID_HANDLE_VALUE) { | |
fd = -1; | |
return 1; | |
} | |
OVERLAPPED overlapped = {}; | |
if (!LockFileEx(hFile, LOCKFILE_EXCLUSIVE_LOCK | LOCKFILE_FAIL_IMMEDIATELY, 0, MAXDWORD, MAXDWORD, | |
&overlapped)) { | |
fd = -1; | |
return 1; | |
} | |
fd = fileno(file); | |
if (flock(fd, LOCK_EX | LOCK_NB) != 0) { | |
fd = -1; | |
return 1; | |
} | |
} | |
return 0; | |
} | |
~File() { | |
if (fd >= 0) { | |
if (hFile != INVALID_HANDLE_VALUE) { | |
OVERLAPPED overlapped = {}; | |
UnlockFileEx(hFile, 0, MAXDWORD, MAXDWORD, &overlapped); | |
} | |
flock(fd, LOCK_UN); | |
} | |
if (file) { | |
fclose(file); | |
} | |
} | |
private: | |
int fd = -1; | |
HANDLE hFile = nullptr; | |
}; | |
class HttpClient { | |
public: | |
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file, | |
const bool progress, std::string * response_str = nullptr) { | |
if (std::filesystem::exists(output_file)) { | |
return 0; | |
} | |
std::string output_file_partial; | |
curl = curl_easy_init(); | |
if (!curl) { | |
return 1; | |
} | |
progress_data data; | |
File out; | |
if (!output_file.empty()) { | |
output_file_partial = output_file + ".partial"; | |
if (!out.open(output_file_partial, "ab")) { | |
printe("Failed to open file\n"); | |
return 1; | |
} | |
if (out.lock()) { | |
printe("Failed to exclusively lock file\n"); | |
return 1; | |
} | |
} | |
set_write_options(response_str, out); | |
data.file_size = set_resume_point(output_file_partial); | |
set_progress_options(progress, data); | |
set_headers(headers); | |
CURLcode res = perform(url); | |
if (res != CURLE_OK){ | |
printe("Fetching resource '%s' failed: %s\n", url.c_str(), curl_easy_strerror(res)); | |
return 1; | |
} | |
if (!output_file.empty()) { | |
std::filesystem::rename(output_file_partial, output_file); | |
} | |
return 0; | |
} | |
~HttpClient() { | |
if (chunk) { | |
curl_slist_free_all(chunk); | |
} | |
if (curl) { | |
curl_easy_cleanup(curl); | |
} | |
} | |
private: | |
CURL * curl = nullptr; | |
struct curl_slist * chunk = nullptr; | |
void set_write_options(std::string * response_str, const File & out) { | |
if (response_str) { | |
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data); | |
curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str); | |
} else { | |
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data); | |
curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.file); | |
} | |
} | |
size_t set_resume_point(const std::string & output_file) { | |
size_t file_size = 0; | |
if (std::filesystem::exists(output_file)) { | |
file_size = std::filesystem::file_size(output_file); | |
curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size)); | |
} | |
return file_size; | |
} | |
void set_progress_options(bool progress, progress_data & data) { | |
if (progress) { | |
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L); | |
curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data); | |
curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, update_progress); | |
} | |
} | |
void set_headers(const std::vector<std::string> & headers) { | |
if (!headers.empty()) { | |
if (chunk) { | |
curl_slist_free_all(chunk); | |
chunk = 0; | |
} | |
for (const auto & header : headers) { | |
chunk = curl_slist_append(chunk, header.c_str()); | |
} | |
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk); | |
} | |
} | |
CURLcode perform(const std::string & url) { | |
curl_easy_setopt(curl, CURLOPT_URL, url.c_str()); | |
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); | |
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https"); | |
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L); | |
return curl_easy_perform(curl); | |
} | |
static std::string human_readable_time(double seconds) { | |
int hrs = static_cast<int>(seconds) / 3600; | |
int mins = (static_cast<int>(seconds) % 3600) / 60; | |
int secs = static_cast<int>(seconds) % 60; | |
if (hrs > 0) { | |
return fmt("%dh %02dm %02ds", hrs, mins, secs); | |
} else if (mins > 0) { | |
return fmt("%dm %02ds", mins, secs); | |
} else { | |
return fmt("%ds", secs); | |
} | |
} | |
static std::string human_readable_size(curl_off_t size) { | |
static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" }; | |
char length = sizeof(suffix) / sizeof(suffix[0]); | |
int i = 0; | |
double dbl_size = size; | |
if (size > 1024) { | |
for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) { | |
dbl_size = size / 1024.0; | |
} | |
} | |
return fmt("%.2f %s", dbl_size, suffix[i]); | |
} | |
static int update_progress(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t, | |
curl_off_t) { | |
progress_data * data = static_cast<progress_data *>(ptr); | |
if (total_to_download <= 0) { | |
return 0; | |
} | |
total_to_download += data->file_size; | |
const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size; | |
const curl_off_t percentage = calculate_percentage(now_downloaded_plus_file_size, total_to_download); | |
std::string progress_prefix = generate_progress_prefix(percentage); | |
const double speed = calculate_speed(now_downloaded, data->start_time); | |
const double tim = (total_to_download - now_downloaded) / speed; | |
std::string progress_suffix = | |
generate_progress_suffix(now_downloaded_plus_file_size, total_to_download, speed, tim); | |
int progress_bar_width = calculate_progress_bar_width(progress_prefix, progress_suffix); | |
std::string progress_bar; | |
generate_progress_bar(progress_bar_width, percentage, progress_bar); | |
print_progress(progress_prefix, progress_bar, progress_suffix); | |
data->printed = true; | |
return 0; | |
} | |
static curl_off_t calculate_percentage(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download) { | |
return (now_downloaded_plus_file_size * 100) / total_to_download; | |
} | |
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); } | |
static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) { | |
const auto now = std::chrono::steady_clock::now(); | |
const std::chrono::duration<double> elapsed_seconds = now - start_time; | |
return now_downloaded / elapsed_seconds.count(); | |
} | |
static std::string generate_progress_suffix(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download, | |
double speed, double estimated_time) { | |
const int width = 10; | |
return fmt("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(), width, | |
human_readable_size(total_to_download).c_str(), width, human_readable_size(speed).c_str(), width, | |
human_readable_time(estimated_time).c_str()); | |
} | |
static int calculate_progress_bar_width(const std::string & progress_prefix, const std::string & progress_suffix) { | |
int progress_bar_width = get_terminal_width() - progress_prefix.size() - progress_suffix.size() - 3; | |
if (progress_bar_width < 1) { | |
progress_bar_width = 1; | |
} | |
return progress_bar_width; | |
} | |
static std::string generate_progress_bar(int progress_bar_width, curl_off_t percentage, | |
std::string & progress_bar) { | |
const curl_off_t pos = (percentage * progress_bar_width) / 100; | |
for (int i = 0; i < progress_bar_width; ++i) { | |
progress_bar.append((i < pos) ? "█" : " "); | |
} | |
return progress_bar; | |
} | |
static void print_progress(const std::string & progress_prefix, const std::string & progress_bar, | |
const std::string & progress_suffix) { | |
printe("\r%*s\r%s%s| %s", get_terminal_width(), " ", progress_prefix.c_str(), progress_bar.c_str(), | |
progress_suffix.c_str()); | |
} | |
// Function to write data to a file | |
static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) { | |
FILE * out = static_cast<FILE *>(stream); | |
return fwrite(ptr, size, nmemb, out); | |
} | |
// Function to capture data into a string | |
static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) { | |
std::string * str = static_cast<std::string *>(stream); | |
str->append(static_cast<char *>(ptr), size * nmemb); | |
return size * nmemb; | |
} | |
}; | |
class LlamaData { | |
public: | |
llama_model_ptr model; | |
llama_sampler_ptr sampler; | |
llama_context_ptr context; | |
std::vector<llama_chat_message> messages; | |
std::list<std::string> msg_strs; | |
std::vector<char> fmtted; | |
int init(Opt & opt) { | |
model = initialize_model(opt); | |
if (!model) { | |
return 1; | |
} | |
context = initialize_context(model, opt); | |
if (!context) { | |
return 1; | |
} | |
sampler = initialize_sampler(opt); | |
return 0; | |
} | |
private: | |
int download(const std::string & url, const std::string & output_file, const bool progress, | |
const std::vector<std::string> & headers = {}, std::string * response_str = nullptr) { | |
HttpClient http; | |
if (http.init(url, headers, output_file, progress, response_str)) { | |
return 1; | |
} | |
return 0; | |
} | |
int download(const std::string &, const std::string &, const bool, const std::vector<std::string> & = {}, | |
std::string * = nullptr) { | |
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__); | |
return 1; | |
} | |
// Helper function to handle model tag extraction and URL construction | |
std::pair<std::string, std::string> extract_model_and_tag(std::string & model, const std::string & base_url) { | |
std::string model_tag = "latest"; | |
const size_t colon_pos = model.find(':'); | |
if (colon_pos != std::string::npos) { | |
model_tag = model.substr(colon_pos + 1); | |
model = model.substr(0, colon_pos); | |
} | |
std::string url = base_url + model + "/manifests/" + model_tag; | |
return { model, url }; | |
} | |
// Helper function to download and parse the manifest | |
int download_and_parse_manifest(const std::string & url, const std::vector<std::string> & headers, | |
nlohmann::json & manifest) { | |
std::string manifest_str; | |
int ret = download(url, "", false, headers, &manifest_str); | |
if (ret) { | |
return ret; | |
} | |
manifest = nlohmann::json::parse(manifest_str); | |
return 0; | |
} | |
int huggingface_dl(std::string & model, const std::string & bn) { | |
// Find the second occurrence of '/' after protocol string | |
size_t pos = model.find('/'); | |
pos = model.find('/', pos + 1); | |
std::string hfr, hff; | |
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" }; | |
std::string url; | |
if (pos == std::string::npos) { | |
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/"); | |
hfr = model_name; | |
nlohmann::json manifest; | |
int ret = download_and_parse_manifest(manifest_url, headers, manifest); | |
if (ret) { | |
return ret; | |
} | |
hff = manifest["ggufFile"]["rfilename"]; | |
} else { | |
hfr = model.substr(0, pos); | |
hff = model.substr(pos + 1); | |
} | |
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff; | |
return download(url, bn, true, headers); | |
} | |
int ollama_dl(std::string & model, const std::string & bn) { | |
const std::vector<std::string> headers = { "Accept: application/vnd.docker.distribution.manifest.v2+json" }; | |
if (model.find('/') == std::string::npos) { | |
model = "library/" + model; | |
} | |
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://registry.ollama.ai/v2/"); | |
nlohmann::json manifest; | |
int ret = download_and_parse_manifest(manifest_url, {}, manifest); | |
if (ret) { | |
return ret; | |
} | |
std::string layer; | |
for (const auto & l : manifest["layers"]) { | |
if (l["mediaType"] == "application/vnd.ollama.image.model") { | |
layer = l["digest"]; | |
break; | |
} | |
} | |
std::string blob_url = "https://registry.ollama.ai/v2/" + model_name + "/blobs/" + layer; | |
return download(blob_url, bn, true, headers); | |
} | |
int github_dl(const std::string & model, const std::string & bn) { | |
std::string repository = model; | |
std::string branch = "main"; | |
const size_t at_pos = model.find('@'); | |
if (at_pos != std::string::npos) { | |
repository = model.substr(0, at_pos); | |
branch = model.substr(at_pos + 1); | |
} | |
const std::vector<std::string> repo_parts = string_split(repository, "/"); | |
if (repo_parts.size() < 3) { | |
printe("Invalid GitHub repository format\n"); | |
return 1; | |
} | |
const std::string & org = repo_parts[0]; | |
const std::string & project = repo_parts[1]; | |
std::string url = "https://raw.githubusercontent.com/" + org + "/" + project + "/" + branch; | |
for (size_t i = 2; i < repo_parts.size(); ++i) { | |
url += "/" + repo_parts[i]; | |
} | |
return download(url, bn, true); | |
} | |
int s3_dl(const std::string & model, const std::string & bn) { | |
const size_t slash_pos = model.find('/'); | |
if (slash_pos == std::string::npos) { | |
return 1; | |
} | |
const std::string bucket = model.substr(0, slash_pos); | |
const std::string key = model.substr(slash_pos + 1); | |
const char * access_key = std::getenv("AWS_ACCESS_KEY_ID"); | |
const char * secret_key = std::getenv("AWS_SECRET_ACCESS_KEY"); | |
if (!access_key || !secret_key) { | |
printe("AWS credentials not found in environment\n"); | |
return 1; | |
} | |
// Generate AWS Signature Version 4 headers | |
// (Implementation requires HMAC-SHA256 and date handling) | |
// Get current timestamp | |
const time_t now = time(nullptr); | |
const tm tm = *gmtime(&now); | |
const std::string date = strftime_fmt("%Y%m%d", tm); | |
const std::string datetime = strftime_fmt("%Y%m%dT%H%M%SZ", tm); | |
const std::vector<std::string> headers = { | |
"Authorization: AWS4-HMAC-SHA256 Credential=" + std::string(access_key) + "/" + date + | |
"/us-east-1/s3/aws4_request", | |
"x-amz-content-sha256: UNSIGNED-PAYLOAD", "x-amz-date: " + datetime | |
}; | |
const std::string url = "https://" + bucket + ".s3.amazonaws.com/" + key; | |
return download(url, bn, true, headers); | |
} | |
std::string basename(const std::string & path) { | |
const size_t pos = path.find_last_of("/\\"); | |
if (pos == std::string::npos) { | |
return path; | |
} | |
return path.substr(pos + 1); | |
} | |
int rm_until_substring(std::string & model_, const std::string & substring) { | |
const std::string::size_type pos = model_.find(substring); | |
if (pos == std::string::npos) { | |
return 1; | |
} | |
model_ = model_.substr(pos + substring.size()); // Skip past the substring | |
return 0; | |
} | |
int resolve_model(std::string & model_) { | |
int ret = 0; | |
if (string_starts_with(model_, "file://") || std::filesystem::exists(model_)) { | |
rm_until_substring(model_, "://"); | |
return ret; | |
} | |
const std::string bn = basename(model_); | |
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://") || | |
string_starts_with(model_, "hf.co/")) { | |
rm_until_substring(model_, "hf.co/"); | |
rm_until_substring(model_, "://"); | |
ret = huggingface_dl(model_, bn); | |
} else if ((string_starts_with(model_, "https://") || string_starts_with(model_, "http://")) && | |
!string_starts_with(model_, "https://ollama.com/library/")) { | |
ret = download(model_, bn, true); | |
} else if (string_starts_with(model_, "github:") || string_starts_with(model_, "github://")) { | |
rm_until_substring(model_, "github:"); | |
rm_until_substring(model_, "://"); | |
ret = github_dl(model_, bn); | |
} else if (string_starts_with(model_, "s3://")) { | |
rm_until_substring(model_, "://"); | |
ret = s3_dl(model_, bn); | |
} else { // ollama:// or nothing | |
rm_until_substring(model_, "ollama.com/library/"); | |
rm_until_substring(model_, "://"); | |
ret = ollama_dl(model_, bn); | |
} | |
model_ = bn; | |
return ret; | |
} | |
// Initializes the model and returns a unique pointer to it | |
llama_model_ptr initialize_model(Opt & opt) { | |
ggml_backend_load_all(); | |
resolve_model(opt.model_); | |
printe( | |
"\r%*s" | |
"\rLoading model", | |
get_terminal_width(), " "); | |
llama_model_ptr model(llama_model_load_from_file(opt.model_.c_str(), opt.model_params)); | |
if (!model) { | |
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str()); | |
} | |
printe("\r%*s\r", static_cast<int>(sizeof("Loading model")), " "); | |
return model; | |
} | |
// Initializes the context with the specified parameters | |
llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) { | |
llama_context_ptr context(llama_init_from_model(model.get(), opt.ctx_params)); | |
if (!context) { | |
printe("%s: error: failed to create the llama_context\n", __func__); | |
} | |
return context; | |
} | |
// Initializes and configures the sampler | |
llama_sampler_ptr initialize_sampler(const Opt & opt) { | |
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params())); | |
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1)); | |
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature)); | |
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); | |
return sampler; | |
} | |
}; | |
// Add a message to `messages` and store its content in `msg_strs` | |
static void add_message(const char * role, const std::string & text, LlamaData & llama_data) { | |
llama_data.msg_strs.push_back(std::move(text)); | |
llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() }); | |
} | |
// Function to apply the chat template and resize `formatted` if needed | |
static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) { | |
if (use_jinja) { | |
json messages = json::array(); | |
for (const auto & msg : llama_data.messages) { | |
messages.push_back({ | |
{"role", msg.role}, | |
{"content", msg.content}, | |
}); | |
} | |
try { | |
minja::chat_template_inputs tmpl_inputs; | |
tmpl_inputs.messages = messages; | |
tmpl_inputs.add_generation_prompt = append; | |
minja::chat_template_options tmpl_opts; | |
tmpl_opts.use_bos_token = false; | |
tmpl_opts.use_eos_token = false; | |
auto result = tmpl.apply(tmpl_inputs, tmpl_opts); | |
llama_data.fmtted.resize(result.size() + 1); | |
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1); | |
return result.size(); | |
} catch (const std::exception & e) { | |
printe("failed to render the chat template: %s\n", e.what()); | |
return -1; | |
} | |
} | |
int result = llama_chat_apply_template( | |
tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append, | |
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0); | |
if (append && result > static_cast<int>(llama_data.fmtted.size())) { | |
llama_data.fmtted.resize(result); | |
result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(), | |
llama_data.messages.size(), append, llama_data.fmtted.data(), | |
llama_data.fmtted.size()); | |
} | |
return result; | |
} | |
// Function to tokenize the prompt | |
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt, | |
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) { | |
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0; | |
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); | |
prompt_tokens.resize(n_prompt_tokens); | |
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, | |
true) < 0) { | |
printe("failed to tokenize the prompt\n"); | |
return -1; | |
} | |
return n_prompt_tokens; | |
} | |
// Check if we have enough space in the context to evaluate this batch | |
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) { | |
const int n_ctx = llama_n_ctx(ctx.get()); | |
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get()); | |
if (n_ctx_used + batch.n_tokens > n_ctx) { | |
printf(LOG_COL_DEFAULT "\n"); | |
printe("context size exceeded\n"); | |
return 1; | |
} | |
return 0; | |
} | |
// convert the token to a string | |
static int convert_token_to_string(const llama_vocab * vocab, const llama_token token_id, std::string & piece) { | |
char buf[256]; | |
int n = llama_token_to_piece(vocab, token_id, buf, sizeof(buf), 0, true); | |
if (n < 0) { | |
printe("failed to convert token to piece\n"); | |
return 1; | |
} | |
piece = std::string(buf, n); | |
return 0; | |
} | |
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) { | |
printf("%s", piece.c_str()); | |
fflush(stdout); | |
response += piece; | |
} | |
// helper function to evaluate a prompt and generate a response | |
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) { | |
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get()); | |
std::vector<llama_token> tokens; | |
if (tokenize_prompt(vocab, prompt, tokens, llama_data) < 0) { | |
return 1; | |
} | |
// prepare a batch for the prompt | |
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size()); | |
llama_token new_token_id; | |
while (true) { | |
check_context_size(llama_data.context, batch); | |
if (llama_decode(llama_data.context.get(), batch)) { | |
printe("failed to decode\n"); | |
return 1; | |
} | |
// sample the next token, check is it an end of generation? | |
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1); | |
if (llama_vocab_is_eog(vocab, new_token_id)) { | |
break; | |
} | |
std::string piece; | |
if (convert_token_to_string(vocab, new_token_id, piece)) { | |
return 1; | |
} | |
print_word_and_concatenate_to_response(piece, response); | |
// prepare the next batch with the sampled token | |
batch = llama_batch_get_one(&new_token_id, 1); | |
} | |
printf(LOG_COL_DEFAULT); | |
return 0; | |
} | |
static int read_user_input(std::string & user_input) { | |
static const char * prompt_prefix = "> "; | |
printf( | |
"\r%*s" | |
"\r" LOG_COL_DEFAULT "%s", | |
get_terminal_width(), " ", prompt_prefix); | |
std::getline(std::cin, user_input); | |
if (std::cin.eof()) { | |
printf("\n"); | |
return 1; | |
} | |
std::unique_ptr<char, decltype(&std::free)> line(const_cast<char *>(linenoise(prompt_prefix)), free); | |
if (!line) { | |
return 1; | |
} | |
user_input = line.get(); | |
if (user_input == "/bye") { | |
return 1; | |
} | |
if (user_input.empty()) { | |
return 2; | |
} | |
linenoiseHistoryAdd(line.get()); | |
return 0; // Should have data in happy path | |
} | |
// Function to generate a response based on the prompt | |
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response, | |
const bool stdout_a_terminal) { | |
// Set response color | |
if (stdout_a_terminal) { | |
printf(LOG_COL_YELLOW); | |
} | |
if (generate(llama_data, prompt, response)) { | |
printe("failed to generate response\n"); | |
return 1; | |
} | |
// End response with color reset and newline | |
printf("\n%s", stdout_a_terminal ? LOG_COL_DEFAULT : ""); | |
return 0; | |
} | |
// Helper function to apply the chat template and handle errors | |
static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) { | |
const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja); | |
if (new_len < 0) { | |
printe("failed to apply the chat template\n"); | |
return -1; | |
} | |
output_length = new_len; | |
return 0; | |
} | |
// Helper function to handle user input | |
static int handle_user_input(std::string & user_input, const std::string & user) { | |
if (!user.empty()) { | |
user_input = user; | |
return 0; // No need for interactive input | |
} | |
return read_user_input(user_input); // Returns true if input ends the loop | |
} | |
static bool is_stdin_a_terminal() { | |
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE); | |
DWORD mode; | |
return GetConsoleMode(hStdin, &mode); | |
return isatty(STDIN_FILENO); | |
} | |
static bool is_stdout_a_terminal() { | |
HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE); | |
DWORD mode; | |
return GetConsoleMode(hStdout, &mode); | |
return isatty(STDOUT_FILENO); | |
} | |
// Function to handle user input | |
static int get_user_input(std::string & user_input, const std::string & user) { | |
while (true) { | |
const int ret = handle_user_input(user_input, user); | |
if (ret == 1) { | |
return 1; | |
} | |
if (ret == 2) { | |
continue; | |
} | |
break; | |
} | |
return 0; | |
} | |
// Main chat loop function | |
static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) { | |
int prev_len = 0; | |
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get())); | |
auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), ""); | |
GGML_ASSERT(chat_templates.template_default); | |
static const bool stdout_a_terminal = is_stdout_a_terminal(); | |
while (true) { | |
// Get user input | |
std::string user_input; | |
if (get_user_input(user_input, user) == 1) { | |
return 0; | |
} | |
add_message("user", user.empty() ? user_input : user, llama_data); | |
int new_len; | |
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) { | |
return 1; | |
} | |
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len); | |
std::string response; | |
if (generate_response(llama_data, prompt, response, stdout_a_terminal)) { | |
return 1; | |
} | |
if (!user.empty()) { | |
break; | |
} | |
add_message("assistant", response, llama_data); | |
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) { | |
return 1; | |
} | |
} | |
return 0; | |
} | |
static void log_callback(const enum ggml_log_level level, const char * text, void * p) { | |
const Opt * opt = static_cast<Opt *>(p); | |
if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) { | |
printe("%s", text); | |
} | |
} | |
static std::string read_pipe_data() { | |
std::ostringstream result; | |
result << std::cin.rdbuf(); // Read all data from std::cin | |
return result.str(); | |
} | |
static void ctrl_c_handling() { | |
struct sigaction sigint_action; | |
sigint_action.sa_handler = sigint_handler; | |
sigemptyset(&sigint_action.sa_mask); | |
sigint_action.sa_flags = 0; | |
sigaction(SIGINT, &sigint_action, NULL); | |
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { | |
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; | |
}; | |
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); | |
} | |
int main(int argc, const char ** argv) { | |
ctrl_c_handling(); | |
Opt opt; | |
const int ret = opt.init(argc, argv); | |
if (ret == 2) { | |
return 0; | |
} else if (ret) { | |
return 1; | |
} | |
if (!is_stdin_a_terminal()) { | |
if (!opt.user.empty()) { | |
opt.user += "\n\n"; | |
} | |
opt.user += read_pipe_data(); | |
} | |
llama_log_set(log_callback, &opt); | |
LlamaData llama_data; | |
if (llama_data.init(opt)) { | |
return 1; | |
} | |
if (chat_loop(llama_data, opt.user, opt.use_jinja)) { | |
return 1; | |
} | |
return 0; | |
} | |