Spaces:
Build error
Build error
import argparse | |
from typing import Dict | |
import torch | |
import numpy as np | |
from gguf import * | |
from transformers import ( | |
Qwen2VLForConditionalGeneration, | |
Qwen2VLProcessor, | |
AutoProcessor, | |
Qwen2VLConfig | |
) | |
VISION = "clip.vision" | |
def k(raw_key: str, arch: str) -> str: | |
return raw_key.format(arch=arch) | |
def to_gguf_name(name: str) -> str: | |
og = name | |
name = name.replace("text_model", "t").replace("vision_model", "v") | |
name = name.replace("blocks", "blk").replace("embeddings.", "") | |
name = name.replace("attn.", "attn_") | |
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.") | |
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln") | |
name = name.replace("norm1", "ln1").replace("norm2", "ln2") | |
name = name.replace("merger.mlp", 'mm') | |
print(f"[to_gguf_name] {og} --> {name}") | |
return name | |
def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]: | |
vision_model = qwen2vl.visual | |
tensor_map = {} | |
for name, ten in vision_model.state_dict().items(): | |
ten = ten.numpy() | |
if 'qkv' in name: | |
if ten.ndim == 2: # weight | |
c3, _ = ten.shape | |
else: # bias | |
c3 = ten.shape[0] | |
assert c3 % 3 == 0 | |
c = c3 // 3 | |
wq = ten[:c] | |
wk = ten[c: c * 2] | |
wv = ten[c * 2:] | |
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq | |
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk | |
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv | |
elif 'merger' in name: | |
if name.endswith("ln_q.weight"): | |
tensor_map['v.post_ln.weight'] = ten | |
elif name.endswith("ln_q.bias"): | |
tensor_map['v.post_ln.bias'] = ten | |
else: | |
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias" | |
tensor_map[to_gguf_name(name)] = ten | |
elif 'patch_embed.proj.weight' in name: | |
# NOTE: split Conv3D into Conv2Ds | |
c1, c2, kt, kh, kw = ten.shape | |
assert kt == 2, "Current implmentation only support temporal_patch_size of 2" | |
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...] | |
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...] | |
else: | |
tensor_map[to_gguf_name(f"vision_model.{name}")] = ten | |
for new_name, ten in tensor_map.items(): | |
if ten.ndim <= 1 or new_name.endswith("_norm.weight"): | |
tensor_map[new_name] = ten.astype(np.float32) | |
else: | |
tensor_map[new_name] = ten.astype(dtype) | |
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder | |
return tensor_map | |
def main(args): | |
if args.data_type == 'fp32': | |
dtype = torch.float32 | |
np_dtype = np.float32 | |
ftype = 0 | |
elif args.data_type == 'fp16': | |
dtype = torch.float32 | |
np_dtype = np.float16 | |
ftype = 1 | |
else: | |
raise ValueError() | |
local_model = False | |
model_path = "" | |
model_name = args.model_name | |
print("model_name: ", model_name) | |
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained( | |
model_name, torch_dtype=dtype, device_map="cpu" | |
) | |
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType] | |
vcfg = cfg.vision_config | |
if os.path.isdir(model_name): | |
local_model = True | |
if model_name.endswith(os.sep): | |
model_name = model_name[:-1] | |
model_path = model_name | |
model_name = os.path.basename(model_name) | |
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf" | |
fout = GGUFWriter(path=fname_out, arch="clip") | |
fout.add_description("image encoder for Qwen2VL") | |
fout.add_file_type(ftype) | |
fout.add_bool("clip.has_text_encoder", False) | |
fout.add_bool("clip.has_vision_encoder", True) | |
fout.add_bool("clip.has_qwen2vl_merger", True) | |
fout.add_string("clip.projector_type", "qwen2vl_merger") | |
print(cfg.vision_config) | |
if 'silu' in cfg.vision_config.hidden_act.lower(): | |
fout.add_bool("clip.use_silu", True) | |
fout.add_bool("clip.use_gelu", False) | |
elif 'gelu' in cfg.vision_config.hidden_act.lower(): | |
fout.add_bool("clip.use_silu", False) | |
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower()) | |
else: | |
raise ValueError() | |
tensor_map = find_vision_tensors(qwen2vl, np_dtype) | |
for name, data in tensor_map.items(): | |
fout.add_tensor(name, data) | |
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size) | |
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2) | |
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim) | |
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size) | |
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads) | |
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) | |
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth) | |
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder | |
fout.add_name(model_name) | |
""" | |
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig, | |
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`. | |
""" | |
if local_model: | |
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path) | |
else: | |
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name) | |
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue] | |
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue] | |
fout.write_header_to_file() | |
fout.write_kv_data_to_file() | |
fout.write_tensors_to_file() | |
fout.close() | |
print("save model as: ", fname_out) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct") | |
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32") | |
args = parser.parse_args() | |
main(args) | |