Spaces:
Build error
Build error
struct llama_sampler_llg { | |
const llama_vocab * vocab; | |
std::string grammar_kind; | |
std::string grammar_data; | |
LlgTokenizer * tokenizer; | |
LlgConstraint * grammar; | |
LlgMaskResult llg_res; | |
bool has_llg_res; | |
}; | |
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind, | |
const char * grammar_data) { | |
LlgConstraintInit cinit; | |
llg_constraint_init_set_defaults(&cinit, tokenizer); | |
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL"); | |
if (log_level && *log_level) { | |
cinit.log_stderr_level = atoi(log_level); | |
} | |
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data); | |
if (llg_get_error(c)) { | |
LOG_ERR("llg error: %s\n", llg_get_error(c)); | |
llg_free_constraint(c); | |
return nullptr; | |
} | |
return c; | |
} | |
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) { | |
return "llguidance"; | |
} | |
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) { | |
auto * ctx = (llama_sampler_llg *) smpl->ctx; | |
if (ctx->grammar) { | |
LlgCommitResult res; | |
llg_commit_token(ctx->grammar, token, &res); | |
ctx->has_llg_res = false; | |
} | |
} | |
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) { | |
auto * ctx = (llama_sampler_llg *) smpl->ctx; | |
if (ctx->grammar) { | |
if (!ctx->has_llg_res) { | |
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) { | |
ctx->has_llg_res = true; | |
} else { | |
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar)); | |
llg_free_constraint(ctx->grammar); | |
ctx->grammar = nullptr; | |
} | |
} | |
if (ctx->has_llg_res) { | |
if (ctx->llg_res.is_stop) { | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) { | |
cur_p->data[i].logit = -INFINITY; | |
} | |
} | |
} else { | |
const uint32_t * mask = ctx->llg_res.sample_mask; | |
for (size_t i = 0; i < cur_p->size; ++i) { | |
auto token = cur_p->data[i].id; | |
if ((mask[token / 32] & (1 << (token % 32))) == 0) { | |
cur_p->data[i].logit = -INFINITY; | |
} | |
} | |
} | |
} | |
} | |
} | |
static void llama_sampler_llg_reset(llama_sampler * smpl) { | |
auto * ctx = (llama_sampler_llg *) smpl->ctx; | |
if (!ctx->grammar) { | |
return; | |
} | |
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str()); | |
llg_free_constraint(ctx->grammar); | |
ctx->grammar = grammar_new; | |
ctx->has_llg_res = false; | |
} | |
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) { | |
const auto * ctx = (const llama_sampler_llg *) smpl->ctx; | |
auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr); | |
// copy the state | |
{ | |
auto * result_ctx = (llama_sampler_llg *) result->ctx; | |
if (ctx->grammar) { | |
result_ctx->grammar_kind = ctx->grammar_kind; | |
result_ctx->grammar_data = ctx->grammar_data; | |
result_ctx->grammar = llg_clone_constraint(ctx->grammar); | |
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer); | |
} | |
} | |
return result; | |
} | |
static void llama_sampler_llg_free(llama_sampler * smpl) { | |
const auto * ctx = (llama_sampler_llg *) smpl->ctx; | |
if (ctx->grammar) { | |
llg_free_constraint(ctx->grammar); | |
llg_free_tokenizer(ctx->tokenizer); | |
} | |
delete ctx; | |
} | |
static llama_sampler_i llama_sampler_llg_i = { | |
/* .name = */ llama_sampler_llg_name, | |
/* .accept = */ llama_sampler_llg_accept_impl, | |
/* .apply = */ llama_sampler_llg_apply, | |
/* .reset = */ llama_sampler_llg_reset, | |
/* .clone = */ llama_sampler_llg_clone, | |
/* .free = */ llama_sampler_llg_free, | |
}; | |
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len, | |
uint32_t * output_tokens, size_t output_tokens_len) { | |
const llama_vocab * vocab = (const llama_vocab *) user_data; | |
int r = 0; | |
try { | |
r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false, | |
true); | |
} catch (const std::exception & e) { | |
GGML_ABORT("llama_tokenize failed: %s\n", e.what()); | |
} | |
if (r < 0) { | |
return -r; | |
} | |
return r; | |
} | |
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) { | |
// TODO store the tokenizer in the vocab somehow | |
static const llama_vocab * vocab_cache; | |
static LlgTokenizer * tokenizer_cache; | |
if (vocab_cache == vocab) { | |
return llg_clone_tokenizer(tokenizer_cache); | |
} | |
auto tok_eos = llama_vocab_eot(vocab); | |
if (tok_eos == LLAMA_TOKEN_NULL) { | |
tok_eos = llama_vocab_eos(vocab); | |
} | |
size_t vocab_size = llama_vocab_n_tokens(vocab); | |
auto token_lens = new uint32_t[vocab_size]; | |
// we typically have ~7 bytes per token; let's go on the safe side here | |
auto token_bytes_size = vocab_size * 16 + 1024 * 1024; | |
auto token_bytes = new uint8_t[token_bytes_size]; | |
size_t offset = 0; | |
for (size_t i = 0; i < vocab_size; i++) { | |
size_t max_token = 1024; | |
if (token_bytes_size - offset < max_token) { | |
GGML_ABORT("token_bytes buffer too small\n"); | |
} | |
llama_token token = i; | |
auto dp = (char *) token_bytes + offset; | |
auto size = llama_detokenize(vocab, &token, 1, dp, max_token, false, false); | |
if (size < 0) { | |
GGML_ABORT("llama_detokenize failed\n"); | |
} | |
if (size == 0) { | |
size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true); | |
if (size < 0) { | |
GGML_ABORT("llama_detokenize failed\n"); | |
} | |
if (size != 0) { | |
*dp = '\xff'; // special token prefix marker | |
size += 1; | |
} | |
} | |
token_lens[i] = size; | |
offset += size; | |
} | |
LlgTokenizerInit tinit = { | |
/* .vocab_size = */ (uint32_t) vocab_size, | |
/* .tok_eos = */ (uint32_t) tok_eos, | |
/* .token_lens = */ token_lens, | |
/* .token_bytes = */ token_bytes, | |
/* .tokenizer_json = */ nullptr, | |
/* .tokenize_assumes_string = */ true, | |
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn, | |
/* .use_approximate_greedy_tokenize_fn = */ false, | |
/* .tokenize_user_data = */ vocab, | |
}; | |
char error_buffer[1024]; | |
LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer)); | |
delete[] token_bytes; | |
delete[] token_lens; | |
if (tokenizer == nullptr) { | |
LOG_ERR("llg tokenizer error: %s\n", error_buffer); | |
return tokenizer; | |
} | |
if (tokenizer_cache) { | |
llg_free_tokenizer(tokenizer_cache); | |
} | |
vocab_cache = vocab; | |
tokenizer_cache = tokenizer; | |
return llg_clone_tokenizer(tokenizer_cache); | |
} | |
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind, | |
const char * grammar_data) { | |
auto * ctx = new llama_sampler_llg; | |
if (grammar_kind != nullptr && grammar_kind[0] != '\0') { | |
auto tokenizer = llama_sampler_llg_new_tokenizer(vocab); | |
*ctx = { | |
/* .vocab = */ vocab, | |
/* .grammar_kind = */ grammar_kind, | |
/* .grammar_data = */ grammar_data, | |
/* .tokenizer = */ tokenizer, | |
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data), | |
/* .llg_res = */ {}, | |
/* .has_llg_res = */ false, | |
}; | |
} else { | |
*ctx = { | |
/* .vocab = */ vocab, | |
/* .grammar_kind = */ {}, | |
/* .grammar_data = */ {}, | |
/* .tokenizer = */ nullptr, | |
/* .grammar = */ nullptr, | |
/* .llg_res = */ {}, | |
/* .has_llg_res = */ false, | |
}; | |
} | |
return new llama_sampler{ | |
/* .iface = */ &llama_sampler_llg_i, | |
/* .ctx = */ ctx, | |
}; | |
} | |
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) { | |
LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled"); | |
return nullptr; | |
} | |