Spaces:
Build error
Build error
// FIXME: required here for quantization functions | |
// precomputed f32 table for f16 (256 KB) (ggml-impl.h) | |
float ggml_table_f32_f16[1 << 16]; | |
(!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH)) | |
struct backtrace_state { | |
void ** current; | |
void ** end; | |
}; | |
static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) { | |
struct backtrace_state * state = (struct backtrace_state *)arg; | |
uintptr_t pc = _Unwind_GetIP(context); | |
if (pc) { | |
if (state->current == state->end) { | |
return _URC_END_OF_STACK; | |
} else { | |
*state->current++ = (void*)pc; | |
} | |
} | |
return _URC_NO_REASON; | |
} | |
static void ggml_print_backtrace_symbols(void) { | |
const int max = 100; | |
void* buffer[max]; | |
struct backtrace_state state = {buffer, buffer + max}; | |
_Unwind_Backtrace(unwind_callback, &state); | |
int count = state.current - buffer; | |
for (int idx = 0; idx < count; ++idx) { | |
const void * addr = buffer[idx]; | |
const char * symbol = ""; | |
Dl_info info; | |
if (dladdr(addr, &info) && info.dli_sname) { | |
symbol = info.dli_sname; | |
} | |
fprintf(stderr, "%d: %p %s\n", idx, addr, symbol); | |
} | |
} | |
static void ggml_print_backtrace_symbols(void) { | |
void * trace[100]; | |
int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); | |
backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); | |
} | |
static void ggml_print_backtrace_symbols(void) { | |
// platform not supported | |
} | |
static void ggml_print_backtrace(void) { | |
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE"); | |
if (GGML_NO_BACKTRACE) { | |
return; | |
} | |
char attach[32]; | |
snprintf(attach, sizeof(attach), "attach %d", getpid()); | |
int pid = fork(); | |
if (pid == 0) { | |
// try gdb | |
execlp("gdb", "gdb", "--batch", | |
"-ex", "set style enabled on", | |
"-ex", attach, | |
"-ex", "bt -frame-info source-and-location", | |
"-ex", "detach", | |
"-ex", "quit", | |
(char *) NULL); | |
// try lldb | |
execlp("lldb", "lldb", "--batch", | |
"-o", "bt", | |
"-o", "quit", | |
"-p", attach, | |
(char *) NULL); | |
exit(EXIT_FAILURE); | |
} else { | |
int wstatus; | |
waitpid(pid, &wstatus, 0); | |
if (WIFEXITED(wstatus)) { | |
if (WEXITSTATUS(wstatus) == EXIT_FAILURE) { | |
// gdb failed, fallback to backtrace_symbols | |
ggml_print_backtrace_symbols(); | |
} | |
} | |
} | |
} | |
static void ggml_print_backtrace(void) { | |
// platform not supported | |
} | |
void ggml_abort(const char * file, int line, const char * fmt, ...) { | |
fflush(stdout); | |
fprintf(stderr, "%s:%d: ", file, line); | |
va_list args; | |
va_start(args, fmt); | |
vfprintf(stderr, fmt, args); | |
va_end(args); | |
fprintf(stderr, "\n"); | |
ggml_print_backtrace(); | |
abort(); | |
} | |
// | |
// logging | |
// | |
struct ggml_logger_state { | |
ggml_log_callback log_callback; | |
void * log_callback_user_data; | |
}; | |
static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL}; | |
static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) { | |
if (format == NULL) { | |
return; | |
} | |
va_list args_copy; | |
va_copy(args_copy, args); | |
char buffer[128]; | |
int len = vsnprintf(buffer, 128, format, args); | |
if (len < 128) { | |
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data); | |
} else { | |
char * buffer2 = (char *) calloc(len + 1, sizeof(char)); | |
vsnprintf(buffer2, len + 1, format, args_copy); | |
buffer2[len] = 0; | |
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data); | |
free(buffer2); | |
} | |
va_end(args_copy); | |
} | |
void ggml_log_internal(enum ggml_log_level level, const char * format, ...) { | |
va_list args; | |
va_start(args, format); | |
ggml_log_internal_v(level, format, args); | |
va_end(args); | |
} | |
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) { | |
(void) level; | |
(void) user_data; | |
fputs(text, stderr); | |
fflush(stderr); | |
} | |
// | |
// end of logging block | |
// | |
// uncomment to use vDSP for soft max computation | |
// note: not sure if it is actually faster | |
//#define GGML_SOFT_MAX_ACCELERATE | |
void * ggml_aligned_malloc(size_t size) { | |
const int alignment = 64; | |
return _aligned_malloc(size, alignment); | |
if (size == 0) { | |
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n"); | |
return NULL; | |
} | |
void * aligned_memory = NULL; | |
int result = hbw_posix_memalign(&aligned_memory, alignment, size); | |
GGML_UNUSED(alignment); | |
kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE); | |
int result = EFAULT; | |
switch (alloc_status) { | |
case KERN_SUCCESS: | |
result = 0; | |
break; | |
case KERN_INVALID_ADDRESS: | |
result = EINVAL; | |
break; | |
case KERN_NO_SPACE: | |
result = ENOMEM; | |
break; | |
default: | |
result = EFAULT; | |
break; | |
} | |
int result = posix_memalign(&aligned_memory, alignment, size); | |
if (result != 0) { | |
// Handle allocation failure | |
const char *error_desc = "unknown allocation error"; | |
switch (result) { | |
case EINVAL: | |
error_desc = "invalid alignment value"; | |
break; | |
case ENOMEM: | |
error_desc = "insufficient memory"; | |
break; | |
} | |
GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0)); | |
return NULL; | |
} | |
return aligned_memory; | |
} | |
void ggml_aligned_free(void * ptr, size_t size) { | |
GGML_UNUSED(size); | |
_aligned_free(ptr); | |
if (ptr != NULL) { | |
hbw_free(ptr); | |
} | |
if (ptr != NULL) { | |
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size); | |
} | |
free(ptr); | |
} | |
inline static void * ggml_malloc(size_t size) { | |
if (size == 0) { | |
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n"); | |
return NULL; | |
} | |
void * result = malloc(size); | |
if (result == NULL) { | |
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); | |
GGML_ABORT("fatal error"); | |
} | |
return result; | |
} | |
// calloc | |
inline static void * ggml_calloc(size_t num, size_t size) { | |
if (num == 0 || size == 0) { | |
GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n"); | |
return NULL; | |
} | |
void * result = calloc(num, size); | |
if (result == NULL) { | |
GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); | |
GGML_ABORT("fatal error"); | |
} | |
return result; | |
} | |
const char * ggml_status_to_string(enum ggml_status status) { | |
switch (status) { | |
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)"; | |
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)"; | |
case GGML_STATUS_SUCCESS: return "GGML status: success"; | |
case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)"; | |
} | |
return "GGML status: unknown"; | |
} | |
float ggml_fp16_to_fp32(ggml_fp16_t x) { | |
return GGML_FP16_TO_FP32(x); | |
} | |
ggml_fp16_t ggml_fp32_to_fp16(float x) { | |
return GGML_FP32_TO_FP16(x); | |
} | |
float ggml_bf16_to_fp32(ggml_bf16_t x) { | |
return GGML_BF16_TO_FP32(x); // it just left shifts | |
} | |
ggml_bf16_t ggml_fp32_to_bf16(float x) { | |
return GGML_FP32_TO_BF16(x); | |
} | |
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) { | |
for (int64_t i = 0; i < n; i++) { | |
y[i] = GGML_FP16_TO_FP32(x[i]); | |
} | |
} | |
// FIXME: these functions must detect the instruction set at runtime, since they are part of the core ggml library | |
// currently, the ggml_cpu_has_* functions are entirely compile-time | |
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) { | |
int64_t i = 0; | |
//if (ggml_cpu_has_f16c()) { | |
for (; i + 7 < n; i += 8) { | |
__m256 x_vec = _mm256_loadu_ps(x + i); | |
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); | |
_mm_storeu_si128((__m128i *)(y + i), y_vec); | |
} | |
for(; i + 3 < n; i += 4) { | |
__m128 x_vec = _mm_loadu_ps(x + i); | |
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); | |
_mm_storel_epi64((__m128i *)(y + i), y_vec); | |
} | |
//} | |
for (; i < n; i++) { | |
y[i] = GGML_FP32_TO_FP16(x[i]); | |
} | |
} | |
void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) { | |
int64_t i = 0; | |
//if (ggml_cpu_has_avx512()) { | |
for (; i + 16 <= n; i += 16) { | |
_mm512_storeu_ps(y + i, | |
_mm512_castsi512_ps( | |
_mm512_slli_epi32( | |
_mm512_cvtepu16_epi32( | |
_mm256_loadu_si256( | |
(const __m256i *)(x + i))), | |
16))); | |
} | |
//} | |
//if (ggml_cpu_has_avx2()) { | |
for (; i + 8 <= n; i += 8) { | |
_mm256_storeu_ps(y + i, | |
_mm256_castsi256_ps( | |
_mm256_slli_epi32( | |
_mm256_cvtepu16_epi32( | |
_mm_loadu_si128( | |
(const __m128i *)(x + i))), | |
16))); | |
} | |
//} | |
for (; i < n; i++) { | |
y[i] = GGML_BF16_TO_FP32(x[i]); | |
} | |
} | |
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) { | |
for (int i = 0; i < n; i++) { | |
y[i] = ggml_compute_fp32_to_bf16(x[i]); | |
} | |
} | |
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) { | |
int i = 0; | |
// subnormals are flushed to zero on this platform | |
for (; i + 32 <= n; i += 32) { | |
_mm512_storeu_si512( | |
(__m512i *)(y + i), | |
m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16), | |
_mm512_loadu_ps(x + i)))); | |
} | |
for (; i < n; i++) { | |
y[i] = GGML_FP32_TO_BF16(x[i]); | |
} | |
} | |
bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) { | |
return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0; | |
} | |
// | |
// timing | |
// | |
static int64_t timer_freq, timer_start; | |
void ggml_time_init(void) { | |
LARGE_INTEGER t; | |
QueryPerformanceFrequency(&t); | |
timer_freq = t.QuadPart; | |
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq | |
// and the uptime is high enough. | |
// We subtract the program start time to reduce the likelihood of that happening. | |
QueryPerformanceCounter(&t); | |
timer_start = t.QuadPart; | |
} | |
int64_t ggml_time_ms(void) { | |
LARGE_INTEGER t; | |
QueryPerformanceCounter(&t); | |
return ((t.QuadPart-timer_start) * 1000) / timer_freq; | |
} | |
int64_t ggml_time_us(void) { | |
LARGE_INTEGER t; | |
QueryPerformanceCounter(&t); | |
return ((t.QuadPart-timer_start) * 1000000) / timer_freq; | |
} | |
void ggml_time_init(void) {} | |
int64_t ggml_time_ms(void) { | |
struct timespec ts; | |
clock_gettime(CLOCK_MONOTONIC, &ts); | |
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; | |
} | |
int64_t ggml_time_us(void) { | |
struct timespec ts; | |
clock_gettime(CLOCK_MONOTONIC, &ts); | |
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; | |
} | |
int64_t ggml_cycles(void) { | |
return clock(); | |
} | |
int64_t ggml_cycles_per_ms(void) { | |
return CLOCKS_PER_SEC/1000; | |
} | |
// | |
// cross-platform UTF-8 file paths | |
// | |
static wchar_t * ggml_mbstowcs(const char * mbs) { | |
int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0); | |
if (!wlen) { | |
errno = EINVAL; | |
return NULL; | |
} | |
wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t)); | |
wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen); | |
if (!wlen) { | |
GGML_FREE(wbuf); | |
errno = EINVAL; | |
return NULL; | |
} | |
return wbuf; | |
} | |
FILE * ggml_fopen(const char * fname, const char * mode) { | |
FILE * file = NULL; | |
// convert fname (UTF-8) | |
wchar_t * wfname = ggml_mbstowcs(fname); | |
if (wfname) { | |
// convert mode (ANSI) | |
wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t)); | |
wchar_t * wmode_p = wmode; | |
do { | |
*wmode_p++ = (wchar_t)*mode; | |
} while (*mode++); | |
// open file | |
file = _wfopen(wfname, wmode); | |
GGML_FREE(wfname); | |
GGML_FREE(wmode); | |
} | |
return file; | |
return fopen(fname, mode); | |
} | |
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc); | |
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc); | |
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc); | |
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = { | |
[GGML_TYPE_I8] = { | |
.type_name = "i8", | |
.blck_size = 1, | |
.type_size = sizeof(int8_t), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_I16] = { | |
.type_name = "i16", | |
.blck_size = 1, | |
.type_size = sizeof(int16_t), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_I32] = { | |
.type_name = "i32", | |
.blck_size = 1, | |
.type_size = sizeof(int32_t), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_I64] = { | |
.type_name = "i64", | |
.blck_size = 1, | |
.type_size = sizeof(int64_t), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_F64] = { | |
.type_name = "f64", | |
.blck_size = 1, | |
.type_size = sizeof(double), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_F32] = { | |
.type_name = "f32", | |
.blck_size = 1, | |
.type_size = sizeof(float), | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_F16] = { | |
.type_name = "f16", | |
.blck_size = 1, | |
.type_size = sizeof(ggml_fp16_t), | |
.is_quantized = false, | |
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, | |
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row, | |
}, | |
[GGML_TYPE_Q4_0] = { | |
.type_name = "q4_0", | |
.blck_size = QK4_0, | |
.type_size = sizeof(block_q4_0), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q4_0, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref, | |
}, | |
[GGML_TYPE_Q4_1] = { | |
.type_name = "q4_1", | |
.blck_size = QK4_1, | |
.type_size = sizeof(block_q4_1), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q4_1, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref, | |
}, | |
[4] = { // GGML_TYPE_Q4_2 | |
.type_name = "DEPRECATED", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[5] = { // GGML_TYPE_Q4_3 | |
.type_name = "DEPRECATED", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_Q5_0] = { | |
.type_name = "q5_0", | |
.blck_size = QK5_0, | |
.type_size = sizeof(block_q5_0), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q5_0, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref, | |
}, | |
[GGML_TYPE_Q5_1] = { | |
.type_name = "q5_1", | |
.blck_size = QK5_1, | |
.type_size = sizeof(block_q5_1), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q5_1, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref, | |
}, | |
[GGML_TYPE_Q8_0] = { | |
.type_name = "q8_0", | |
.blck_size = QK8_0, | |
.type_size = sizeof(block_q8_0), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q8_0, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref, | |
}, | |
[GGML_TYPE_Q8_1] = { | |
.type_name = "q8_1", | |
.blck_size = QK8_1, | |
.type_size = sizeof(block_q8_1), | |
.is_quantized = true, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref, | |
}, | |
[GGML_TYPE_Q2_K] = { | |
.type_name = "q2_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q2_K), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q2_K, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref, | |
}, | |
[GGML_TYPE_Q3_K] = { | |
.type_name = "q3_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q3_K), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q3_K, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref, | |
}, | |
[GGML_TYPE_Q4_K] = { | |
.type_name = "q4_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q4_K), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q4_K, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref, | |
}, | |
[GGML_TYPE_Q5_K] = { | |
.type_name = "q5_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q5_K), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q5_K, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref, | |
}, | |
[GGML_TYPE_Q6_K] = { | |
.type_name = "q6_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q6_K), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_q6_K, | |
.from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref, | |
}, | |
[GGML_TYPE_IQ2_XXS] = { | |
.type_name = "iq2_xxs", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq2_xxs), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, | |
.from_float_ref = NULL, | |
}, | |
[GGML_TYPE_IQ2_XS] = { | |
.type_name = "iq2_xs", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq2_xs), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs, | |
.from_float_ref = NULL, | |
}, | |
[GGML_TYPE_IQ3_XXS] = { | |
.type_name = "iq3_xxs", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq3_xxs), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs, | |
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref, | |
}, | |
[GGML_TYPE_IQ3_S] = { | |
.type_name = "iq3_s", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq3_s), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq3_s, | |
.from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref, | |
}, | |
[GGML_TYPE_IQ2_S] = { | |
.type_name = "iq2_s", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq2_s), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq2_s, | |
.from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref, | |
}, | |
[GGML_TYPE_IQ1_S] = { | |
.type_name = "iq1_s", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq1_s), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq1_s, | |
.from_float_ref = NULL, | |
}, | |
[GGML_TYPE_IQ1_M] = { | |
.type_name = "iq1_m", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq1_m), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq1_m, | |
.from_float_ref = NULL, | |
}, | |
[GGML_TYPE_IQ4_NL] = { | |
.type_name = "iq4_nl", | |
.blck_size = QK4_NL, | |
.type_size = sizeof(block_iq4_nl), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq4_nl, | |
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref, | |
}, | |
[GGML_TYPE_IQ4_XS] = { | |
.type_name = "iq4_xs", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_iq4_xs), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs, | |
.from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref, | |
}, | |
[GGML_TYPE_Q8_K] = { | |
.type_name = "q8_K", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_q8_K), | |
.is_quantized = true, | |
}, | |
[GGML_TYPE_BF16] = { | |
.type_name = "bf16", | |
.blck_size = 1, | |
.type_size = sizeof(ggml_bf16_t), | |
.is_quantized = false, | |
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row, | |
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref, | |
}, | |
[31] = { // GGML_TYPE_Q4_0_4_4 | |
.type_name = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[32] = { // GGML_TYPE_Q4_0_4_8 | |
.type_name = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[33] = { // GGML_TYPE_Q4_0_8_8 | |
.type_name = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[GGML_TYPE_TQ1_0] = { | |
.type_name = "tq1_0", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_tq1_0), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_tq1_0, | |
.from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref, | |
}, | |
[GGML_TYPE_TQ2_0] = { | |
.type_name = "tq2_0", | |
.blck_size = QK_K, | |
.type_size = sizeof(block_tq2_0), | |
.is_quantized = true, | |
.to_float = (ggml_to_float_t) dequantize_row_tq2_0, | |
.from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref, | |
}, | |
[36] = { // GGML_TYPE_IQ4_NL_4_4 | |
.type_name = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[37] = { // GGML_TYPE_IQ4_NL_4_8 | |
.type_name = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
[38] = { // GGML_TYPE_IQ4_NL_8_8 | |
.type_name = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking", | |
.blck_size = 0, | |
.type_size = 0, | |
.is_quantized = false, | |
}, | |
}; | |
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) { | |
GGML_ASSERT(type < GGML_TYPE_COUNT); | |
return &type_traits[type]; | |
} | |
// | |
// ggml object | |
// | |
struct ggml_object { | |
size_t offs; | |
size_t size; | |
struct ggml_object * next; | |
enum ggml_object_type type; | |
char padding[4]; | |
}; | |
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); | |
// | |
// ggml context | |
// | |
struct ggml_context { | |
size_t mem_size; | |
void * mem_buffer; | |
bool mem_buffer_owned; | |
bool no_alloc; | |
int n_objects; | |
struct ggml_object * objects_begin; | |
struct ggml_object * objects_end; | |
}; | |
struct ggml_context_container { | |
bool used; | |
struct ggml_context context; | |
}; | |
// | |
// data types | |
// | |
static const char * GGML_OP_NAME[GGML_OP_COUNT] = { | |
"NONE", | |
"DUP", | |
"ADD", | |
"ADD1", | |
"ACC", | |
"SUB", | |
"MUL", | |
"DIV", | |
"SQR", | |
"SQRT", | |
"LOG", | |
"SIN", | |
"COS", | |
"SUM", | |
"SUM_ROWS", | |
"MEAN", | |
"ARGMAX", | |
"COUNT_EQUAL", | |
"REPEAT", | |
"REPEAT_BACK", | |
"CONCAT", | |
"SILU_BACK", | |
"NORM", | |
"RMS_NORM", | |
"RMS_NORM_BACK", | |
"GROUP_NORM", | |
"MUL_MAT", | |
"MUL_MAT_ID", | |
"OUT_PROD", | |
"SCALE", | |
"SET", | |
"CPY", | |
"CONT", | |
"RESHAPE", | |
"VIEW", | |
"PERMUTE", | |
"TRANSPOSE", | |
"GET_ROWS", | |
"GET_ROWS_BACK", | |
"DIAG", | |
"DIAG_MASK_INF", | |
"DIAG_MASK_ZERO", | |
"SOFT_MAX", | |
"SOFT_MAX_BACK", | |
"ROPE", | |
"ROPE_BACK", | |
"CLAMP", | |
"CONV_TRANSPOSE_1D", | |
"IM2COL", | |
"IM2COL_BACK", | |
"CONV_TRANSPOSE_2D", | |
"POOL_1D", | |
"POOL_2D", | |
"POOL_2D_BACK", | |
"UPSCALE", | |
"PAD", | |
"PAD_REFLECT_1D", | |
"ARANGE", | |
"TIMESTEP_EMBEDDING", | |
"ARGSORT", | |
"LEAKY_RELU", | |
"FLASH_ATTN_EXT", | |
"FLASH_ATTN_BACK", | |
"SSM_CONV", | |
"SSM_SCAN", | |
"WIN_PART", | |
"WIN_UNPART", | |
"GET_REL_POS", | |
"ADD_REL_POS", | |
"RWKV_WKV6", | |
"GATED_LINEAR_ATTN", | |
"UNARY", | |
"MAP_UNARY", | |
"MAP_BINARY", | |
"MAP_CUSTOM1_F32", | |
"MAP_CUSTOM2_F32", | |
"MAP_CUSTOM3_F32", | |
"MAP_CUSTOM1", | |
"MAP_CUSTOM2", | |
"MAP_CUSTOM3", | |
"CROSS_ENTROPY_LOSS", | |
"CROSS_ENTROPY_LOSS_BACK", | |
"OPT_STEP_ADAMW", | |
}; | |
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); | |
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { | |
"none", | |
"x", | |
"x+y", | |
"x+y", | |
"view(x,nb,offset)+=y->x", | |
"x-y", | |
"x*y", | |
"x/y", | |
"x^2", | |
"√x", | |
"log(x)", | |
"sin(x)", | |
"cos(x)", | |
"Σx", | |
"Σx_k", | |
"Σx/n", | |
"argmax(x)", | |
"count_equal(x)", | |
"repeat(x)", | |
"repeat_back(x)", | |
"concat(x, y)", | |
"silu_back(x)", | |
"norm(x)", | |
"rms_norm(x)", | |
"rms_norm_back(x)", | |
"group_norm(x)", | |
"X*Y", | |
"X[i]*Y", | |
"X*Y", | |
"x*v", | |
"y-\\>view(x)", | |
"x-\\>y", | |
"cont(x)", | |
"reshape(x)", | |
"view(x)", | |
"permute(x)", | |
"transpose(x)", | |
"get_rows(x)", | |
"get_rows_back(x)", | |
"diag(x)", | |
"diag_mask_inf(x)", | |
"diag_mask_zero(x)", | |
"soft_max(x)", | |
"soft_max_back(x)", | |
"rope(x)", | |
"rope_back(x)", | |
"clamp(x)", | |
"conv_transpose_1d(x)", | |
"im2col(x)", | |
"im2col_back(x)", | |
"conv_transpose_2d(x)", | |
"pool_1d(x)", | |
"pool_2d(x)", | |
"pool_2d_back(x)", | |
"upscale(x)", | |
"pad(x)", | |
"pad_reflect_1d(x)", | |
"arange(start, stop, step)", | |
"timestep_embedding(timesteps, dim, max_period)", | |
"argsort(x)", | |
"leaky_relu(x)", | |
"flash_attn_ext(x)", | |
"flash_attn_back(x)", | |
"ssm_conv(x)", | |
"ssm_scan(x)", | |
"win_part(x)", | |
"win_unpart(x)", | |
"get_rel_pos(x)", | |
"add_rel_pos(x)", | |
"rwkv_wkv6(k, v, r, tf, td, s)", | |
"gated_linear_attn(k, v, q, gate, s)", | |
"unary(x)", | |
"f(x)", | |
"f(x,y)", | |
"custom_f32(x)", | |
"custom_f32(x,y)", | |
"custom_f32(x,y,z)", | |
"custom(x)", | |
"custom(x,y)", | |
"custom(x,y,z)", | |
"cross_entropy_loss(x,y)", | |
"cross_entropy_loss_back(x,y)", | |
"adamw(x)", | |
}; | |
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83"); | |
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); | |
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { | |
"ABS", | |
"SGN", | |
"NEG", | |
"STEP", | |
"TANH", | |
"ELU", | |
"RELU", | |
"SIGMOID", | |
"GELU", | |
"GELU_QUICK", | |
"SILU", | |
"HARDSWISH", | |
"HARDSIGMOID", | |
"EXP", | |
}; | |
static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14"); | |
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); | |
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); | |
//////////////////////////////////////////////////////////////////////////////// | |
void ggml_print_object(const struct ggml_object * obj) { | |
GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n", | |
obj->type, obj->offs, obj->size, (const void *) obj->next); | |
} | |
void ggml_print_objects(const struct ggml_context * ctx) { | |
struct ggml_object * obj = ctx->objects_begin; | |
GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx); | |
while (obj != NULL) { | |
ggml_print_object(obj); | |
obj = obj->next; | |
} | |
GGML_LOG_INFO("%s: --- end ---\n", __func__); | |
} | |
int64_t ggml_nelements(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; | |
} | |
int64_t ggml_nrows(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; | |
} | |
size_t ggml_nbytes(const struct ggml_tensor * tensor) { | |
size_t nbytes; | |
const size_t blck_size = ggml_blck_size(tensor->type); | |
if (blck_size == 1) { | |
nbytes = ggml_type_size(tensor->type); | |
for (int i = 0; i < GGML_MAX_DIMS; ++i) { | |
nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; | |
} | |
} | |
else { | |
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size; | |
for (int i = 1; i < GGML_MAX_DIMS; ++i) { | |
nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; | |
} | |
} | |
return nbytes; | |
} | |
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { | |
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); | |
} | |
int64_t ggml_blck_size(enum ggml_type type) { | |
return type_traits[type].blck_size; | |
} | |
size_t ggml_type_size(enum ggml_type type) { | |
return type_traits[type].type_size; | |
} | |
size_t ggml_row_size(enum ggml_type type, int64_t ne) { | |
assert(ne % ggml_blck_size(type) == 0); | |
return ggml_type_size(type)*ne/ggml_blck_size(type); | |
} | |
double ggml_type_sizef(enum ggml_type type) { | |
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size; | |
} | |
const char * ggml_type_name(enum ggml_type type) { | |
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE"; | |
} | |
bool ggml_is_quantized(enum ggml_type type) { | |
return type_traits[type].is_quantized; | |
} | |
const char * ggml_op_name(enum ggml_op op) { | |
return GGML_OP_NAME[op]; | |
} | |
const char * ggml_op_symbol(enum ggml_op op) { | |
return GGML_OP_SYMBOL[op]; | |
} | |
const char * ggml_unary_op_name(enum ggml_unary_op op) { | |
return GGML_UNARY_OP_NAME[op]; | |
} | |
const char * ggml_op_desc(const struct ggml_tensor * t) { | |
if (t->op == GGML_OP_UNARY) { | |
enum ggml_unary_op uop = ggml_get_unary_op(t); | |
return ggml_unary_op_name(uop); | |
} | |
return ggml_op_name(t->op); | |
} | |
size_t ggml_element_size(const struct ggml_tensor * tensor) { | |
return ggml_type_size(tensor->type); | |
} | |
bool ggml_is_scalar(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
} | |
bool ggml_is_vector(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
} | |
bool ggml_is_matrix(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->ne[2] == 1 && tensor->ne[3] == 1; | |
} | |
bool ggml_is_3d(const struct ggml_tensor * tensor) { | |
return tensor->ne[3] == 1; | |
} | |
int ggml_n_dims(const struct ggml_tensor * tensor) { | |
for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) { | |
if (tensor->ne[i] > 1) { | |
return i + 1; | |
} | |
} | |
return 1; | |
} | |
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { | |
enum ggml_type wtype = GGML_TYPE_COUNT; | |
switch (ftype) { | |
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; | |
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; | |
case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break; | |
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; | |
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; | |
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; | |
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; | |
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; | |
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break; | |
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break; | |
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break; | |
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break; | |
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break; | |
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break; | |
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; | |
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; | |
case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break; | |
case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break; | |
case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; | |
case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; | |
case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; | |
case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; | |
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; | |
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; | |
} | |
GGML_ASSERT(wtype != GGML_TYPE_COUNT); | |
return wtype; | |
} | |
size_t ggml_tensor_overhead(void) { | |
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE; | |
} | |
bool ggml_is_transposed(const struct ggml_tensor * tensor) { | |
return tensor->nb[0] > tensor->nb[1]; | |
} | |
static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) { | |
size_t next_nb = ggml_type_size(tensor->type); | |
if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) { | |
return false; | |
} | |
next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
if (tensor->ne[i] != 1) { | |
if (i > n) { | |
if (tensor->nb[i] != next_nb) { | |
return false; | |
} | |
next_nb *= tensor->ne[i]; | |
} else { | |
// this dimension does not need to be contiguous | |
next_nb = tensor->ne[i]*tensor->nb[i]; | |
} | |
} | |
} | |
return true; | |
} | |
bool ggml_is_contiguous(const struct ggml_tensor * tensor) { | |
return ggml_is_contiguous_0(tensor); | |
} | |
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) { | |
return ggml_is_contiguous_n(tensor, 0); | |
} | |
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) { | |
return ggml_is_contiguous_n(tensor, 1); | |
} | |
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) { | |
return ggml_is_contiguous_n(tensor, 2); | |
} | |
bool ggml_is_permuted(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; | |
} | |
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return | |
tensor->nb[0] == ggml_type_size(tensor->type) && | |
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && | |
tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; | |
} | |
bool ggml_is_empty(const struct ggml_tensor * tensor) { | |
for (int i = 0; i < GGML_MAX_DIMS; ++i) { | |
if (tensor->ne[i] == 0) { | |
// empty if any dimension has no elements | |
return true; | |
} | |
} | |
return false; | |
} | |
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return | |
(t0->ne[0] == t1->ne[0]) && | |
(t0->ne[1] == t1->ne[1]) && | |
(t0->ne[2] == t1->ne[2]) && | |
(t0->ne[3] == t1->ne[3]); | |
} | |
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return | |
(t0->nb[0] == t1->nb[0]) && | |
(t0->nb[1] == t1->nb[1]) && | |
(t0->nb[2] == t1->nb[2]) && | |
(t0->nb[3] == t1->nb[3]); | |
} | |
// check if t1 can be represented as a repeatition of t0 | |
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return ggml_is_empty(t0) ? ggml_is_empty(t1) : | |
(t1->ne[0]%t0->ne[0] == 0) && | |
(t1->ne[1]%t0->ne[1] == 0) && | |
(t1->ne[2]%t0->ne[2] == 0) && | |
(t1->ne[3]%t0->ne[3] == 0); | |
} | |
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1); | |
} | |
// assert that pointer is aligned to GGML_MEM_ALIGN | |
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) | |
//////////////////////////////////////////////////////////////////////////////// | |
struct ggml_context * ggml_init(struct ggml_init_params params) { | |
static bool is_first_call = true; | |
ggml_critical_section_start(); | |
if (is_first_call) { | |
// initialize time system (required on Windows) | |
ggml_time_init(); | |
for (int i = 0; i < (1 << 16); ++i) { | |
union { | |
uint16_t u16; | |
ggml_fp16_t fp16; | |
} u = {i}; | |
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16); | |
} | |
is_first_call = false; | |
} | |
ggml_critical_section_end(); | |
struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context)); | |
// allow to call ggml_init with 0 size | |
if (params.mem_size == 0) { | |
params.mem_size = GGML_MEM_ALIGN; | |
} | |
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN); | |
*ctx = (struct ggml_context) { | |
/*.mem_size =*/ mem_size, | |
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size), | |
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true, | |
/*.no_alloc =*/ params.no_alloc, | |
/*.n_objects =*/ 0, | |
/*.objects_begin =*/ NULL, | |
/*.objects_end =*/ NULL, | |
}; | |
GGML_ASSERT(ctx->mem_buffer != NULL); | |
GGML_ASSERT_ALIGNED(ctx->mem_buffer); | |
GGML_PRINT_DEBUG("%s: context initialized\n", __func__); | |
return ctx; | |
} | |
void ggml_reset(struct ggml_context * ctx) { | |
if (ctx == NULL) { | |
return; | |
} | |
ctx->n_objects = 0; | |
ctx->objects_begin = NULL; | |
ctx->objects_end = NULL; | |
} | |
void ggml_free(struct ggml_context * ctx) { | |
if (ctx == NULL) { | |
return; | |
} | |
if (ctx->mem_buffer_owned) { | |
ggml_aligned_free(ctx->mem_buffer, ctx->mem_size); | |
} | |
GGML_FREE(ctx); | |
} | |
size_t ggml_used_mem(const struct ggml_context * ctx) { | |
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; | |
} | |
bool ggml_get_no_alloc(struct ggml_context * ctx) { | |
return ctx->no_alloc; | |
} | |
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) { | |
ctx->no_alloc = no_alloc; | |
} | |
void * ggml_get_mem_buffer(const struct ggml_context * ctx) { | |
return ctx->mem_buffer; | |
} | |
size_t ggml_get_mem_size(const struct ggml_context * ctx) { | |
return ctx->mem_size; | |
} | |
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { | |
size_t max_size = 0; | |
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) { | |
size_t bytes = ggml_nbytes(tensor); | |
max_size = MAX(max_size, bytes); | |
} | |
return max_size; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) { | |
// always insert objects at the end of the context's memory pool | |
struct ggml_object * obj_cur = ctx->objects_end; | |
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs; | |
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; | |
const size_t cur_end = cur_offs + cur_size; | |
// align to GGML_MEM_ALIGN | |
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN); | |
char * const mem_buffer = ctx->mem_buffer; | |
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); | |
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { | |
GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n", | |
__func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size); | |
GGML_ABORT("not enough space in the context's memory pool"); | |
return NULL; | |
} | |
*obj_new = (struct ggml_object) { | |
.offs = cur_end + GGML_OBJECT_SIZE, | |
.size = size_needed, | |
.next = NULL, | |
.type = type, | |
}; | |
GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs); | |
if (obj_cur != NULL) { | |
obj_cur->next = obj_new; | |
} else { | |
// this is the first object in this context | |
ctx->objects_begin = obj_new; | |
} | |
ctx->objects_end = obj_new; | |
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size); | |
return obj_new; | |
} | |
static struct ggml_tensor * ggml_new_tensor_impl( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int n_dims, | |
const int64_t * ne, | |
struct ggml_tensor * view_src, | |
size_t view_offs) { | |
GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT); | |
GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); | |
// find the base tensor and absolute offset | |
if (view_src != NULL && view_src->view_src != NULL) { | |
view_offs += view_src->view_offs; | |
view_src = view_src->view_src; | |
} | |
size_t data_size = ggml_row_size(type, ne[0]); | |
for (int i = 1; i < n_dims; i++) { | |
data_size *= ne[i]; | |
} | |
GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)); | |
void * data = view_src != NULL ? view_src->data : NULL; | |
if (data != NULL) { | |
data = (char *) data + view_offs; | |
} | |
size_t obj_alloc_size = 0; | |
if (view_src == NULL && !ctx->no_alloc) { | |
// allocate tensor data in the context's memory pool | |
obj_alloc_size = data_size; | |
} | |
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); | |
GGML_ASSERT(obj_new); | |
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); | |
*result = (struct ggml_tensor) { | |
/*.type =*/ type, | |
/*.buffer =*/ NULL, | |
/*.ne =*/ { 1, 1, 1, 1 }, | |
/*.nb =*/ { 0, 0, 0, 0 }, | |
/*.op =*/ GGML_OP_NONE, | |
/*.op_params =*/ { 0 }, | |
/*.flags =*/ 0, | |
/*.src =*/ { NULL }, | |
/*.view_src =*/ view_src, | |
/*.view_offs =*/ view_offs, | |
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data, | |
/*.name =*/ { 0 }, | |
/*.extra =*/ NULL, | |
/*.padding =*/ { 0 }, | |
}; | |
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads | |
//GGML_ASSERT_ALIGNED(result->data); | |
for (int i = 0; i < n_dims; i++) { | |
result->ne[i] = ne[i]; | |
} | |
result->nb[0] = ggml_type_size(type); | |
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type)); | |
for (int i = 2; i < GGML_MAX_DIMS; i++) { | |
result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; | |
} | |
ctx->n_objects++; | |
return result; | |
} | |
struct ggml_tensor * ggml_new_tensor( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int n_dims, | |
const int64_t * ne) { | |
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0); | |
} | |
struct ggml_tensor * ggml_new_tensor_1d( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int64_t ne0) { | |
return ggml_new_tensor(ctx, type, 1, &ne0); | |
} | |
struct ggml_tensor * ggml_new_tensor_2d( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int64_t ne0, | |
int64_t ne1) { | |
const int64_t ne[2] = { ne0, ne1 }; | |
return ggml_new_tensor(ctx, type, 2, ne); | |
} | |
struct ggml_tensor * ggml_new_tensor_3d( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2) { | |
const int64_t ne[3] = { ne0, ne1, ne2 }; | |
return ggml_new_tensor(ctx, type, 3, ne); | |
} | |
struct ggml_tensor * ggml_new_tensor_4d( | |
struct ggml_context * ctx, | |
enum ggml_type type, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2, | |
int64_t ne3) { | |
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; | |
return ggml_new_tensor(ctx, type, 4, ne); | |
} | |
void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) { | |
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes); | |
return (uint8_t *)ctx->mem_buffer + obj->offs; | |
} | |
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { | |
return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne); | |
} | |
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { | |
const int64_t ne2 = tensor->ne[2]; | |
const int64_t ne1 = tensor->ne[1]; | |
const int64_t ne0 = tensor->ne[0]; | |
const int64_t i3_ = (i/(ne2*ne1*ne0)); | |
const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0); | |
const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0; | |
const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0); | |
if (i0) { | |
* i0 = i0_; | |
} | |
if (i1) { | |
* i1 = i1_; | |
} | |
if (i2) { | |
* i2 = i2_; | |
} | |
if (i3) { | |
* i3 = i3_; | |
} | |
} | |
void * ggml_get_data(const struct ggml_tensor * tensor) { | |
return tensor->data; | |
} | |
float * ggml_get_data_f32(const struct ggml_tensor * tensor) { | |
assert(tensor->type == GGML_TYPE_F32); | |
return (float *)(tensor->data); | |
} | |
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { | |
GGML_ASSERT(tensor->op == GGML_OP_UNARY); | |
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0); | |
} | |
const char * ggml_get_name(const struct ggml_tensor * tensor) { | |
return tensor->name; | |
} | |
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) { | |
size_t i; | |
for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) { | |
tensor->name[i] = name[i]; | |
} | |
tensor->name[i] = '\0'; | |
return tensor; | |
} | |
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) { | |
va_list args; | |
va_start(args, fmt); | |
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args); | |
va_end(args); | |
return tensor; | |
} | |
struct ggml_tensor * ggml_view_tensor( | |
struct ggml_context * ctx, | |
struct ggml_tensor * src) { | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0); | |
ggml_format_name(result, "%s (view)", src->name); | |
for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
result->nb[i] = src->nb[i]; | |
} | |
return result; | |
} | |
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) { | |
struct ggml_object * obj = ctx->objects_begin; | |
char * const mem_buffer = ctx->mem_buffer; | |
while (obj != NULL) { | |
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { | |
return (struct ggml_tensor *)(mem_buffer + obj->offs); | |
} | |
obj = obj->next; | |
} | |
return NULL; | |
} | |
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) { | |
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE); | |
obj = obj->next; | |
char * const mem_buffer = ctx->mem_buffer; | |
while (obj != NULL) { | |
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { | |
return (struct ggml_tensor *)(mem_buffer + obj->offs); | |
} | |
obj = obj->next; | |
} | |
return NULL; | |
} | |
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) { | |
struct ggml_object * obj = ctx->objects_begin; | |
char * const mem_buffer = ctx->mem_buffer; | |
while (obj != NULL) { | |
if (obj->type == GGML_OBJECT_TYPE_TENSOR) { | |
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs); | |
if (strcmp(cur->name, name) == 0) { | |
return cur; | |
} | |
} | |
obj = obj->next; | |
} | |
return NULL; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
// ggml_dup | |
static struct ggml_tensor * ggml_dup_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_DUP; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_dup( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_dup_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_dup_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_dup_impl(ctx, a, true); | |
} | |
// ggml_add | |
static struct ggml_tensor * ggml_add_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
bool inplace) { | |
GGML_ASSERT(ggml_can_repeat(b, a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_ADD; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_add( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_add_impl(ctx, a, b, false); | |
} | |
struct ggml_tensor * ggml_add_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_add_impl(ctx, a, b, true); | |
} | |
// ggml_add_cast | |
static struct ggml_tensor * ggml_add_cast_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
enum ggml_type type) { | |
// TODO: support less-strict constraint | |
// GGML_ASSERT(ggml_can_repeat(b, a)); | |
GGML_ASSERT(ggml_can_repeat_rows(b, a)); | |
// currently only supported for quantized input and f16 | |
GGML_ASSERT(ggml_is_quantized(a->type) || | |
a->type == GGML_TYPE_F16 || | |
a->type == GGML_TYPE_BF16); | |
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); | |
result->op = GGML_OP_ADD; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_add_cast( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
enum ggml_type type) { | |
return ggml_add_cast_impl(ctx, a, b, type); | |
} | |
// ggml_add1 | |
static struct ggml_tensor * ggml_add1_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
bool inplace) { | |
GGML_ASSERT(ggml_is_scalar(b)); | |
GGML_ASSERT(ggml_is_padded_1d(a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_ADD1; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_add1( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_add1_impl(ctx, a, b, false); | |
} | |
struct ggml_tensor * ggml_add1_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_add1_impl(ctx, a, b, true); | |
} | |
// ggml_acc | |
static struct ggml_tensor * ggml_acc_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset, | |
bool inplace) { | |
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a)); | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(a->type == GGML_TYPE_F32); | |
GGML_ASSERT(b->type == GGML_TYPE_F32); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_ACC; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_acc( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset) { | |
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); | |
} | |
struct ggml_tensor * ggml_acc_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset) { | |
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true); | |
} | |
// ggml_sub | |
static struct ggml_tensor * ggml_sub_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
bool inplace) { | |
GGML_ASSERT(ggml_can_repeat(b, a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SUB; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_sub( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_sub_impl(ctx, a, b, false); | |
} | |
struct ggml_tensor * ggml_sub_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_sub_impl(ctx, a, b, true); | |
} | |
// ggml_mul | |
static struct ggml_tensor * ggml_mul_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
bool inplace) { | |
GGML_ASSERT(ggml_can_repeat(b, a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_MUL; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_mul( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_mul_impl(ctx, a, b, false); | |
} | |
struct ggml_tensor * ggml_mul_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_mul_impl(ctx, a, b, true); | |
} | |
// ggml_div | |
static struct ggml_tensor * ggml_div_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
bool inplace) { | |
GGML_ASSERT(ggml_can_repeat(b, a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_DIV; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_div( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_div_impl(ctx, a, b, false); | |
} | |
struct ggml_tensor * ggml_div_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_div_impl(ctx, a, b, true); | |
} | |
// ggml_sqr | |
static struct ggml_tensor * ggml_sqr_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SQR; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_sqr( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sqr_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_sqr_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sqr_impl(ctx, a, true); | |
} | |
// ggml_sqrt | |
static struct ggml_tensor * ggml_sqrt_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SQRT; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_sqrt( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sqrt_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_sqrt_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sqrt_impl(ctx, a, true); | |
} | |
// ggml_log | |
static struct ggml_tensor * ggml_log_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_LOG; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_log( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_log_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_log_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_log_impl(ctx, a, true); | |
} | |
// ggml_sin | |
static struct ggml_tensor * ggml_sin_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SIN; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_sin( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sin_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_sin_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_sin_impl(ctx, a, true); | |
} | |
// ggml_cos | |
static struct ggml_tensor * ggml_cos_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_COS; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_cos( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_cos_impl(ctx, a, false); | |
} | |
struct ggml_tensor * ggml_cos_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_cos_impl(ctx, a, true); | |
} | |
// ggml_sum | |
struct ggml_tensor * ggml_sum( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); | |
result->op = GGML_OP_SUM; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_sum_rows | |
struct ggml_tensor * ggml_sum_rows( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
int64_t ne[GGML_MAX_DIMS] = { 1 }; | |
for (int i = 1; i < GGML_MAX_DIMS; ++i) { | |
ne[i] = a->ne[i]; | |
} | |
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); | |
result->op = GGML_OP_SUM_ROWS; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_mean | |
struct ggml_tensor * ggml_mean( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
result->op = GGML_OP_MEAN; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_argmax | |
struct ggml_tensor * ggml_argmax( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
GGML_ASSERT(ggml_is_matrix(a)); | |
GGML_ASSERT(a->ne[0] <= INT32_MAX); | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]); | |
result->op = GGML_OP_ARGMAX; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_count_equal | |
struct ggml_tensor * ggml_count_equal( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_are_same_shape(a, b)); | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1); | |
result->op = GGML_OP_COUNT_EQUAL; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_repeat | |
struct ggml_tensor * ggml_repeat( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_can_repeat(a, b)); | |
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); | |
result->op = GGML_OP_REPEAT; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_repeat_back | |
struct ggml_tensor * ggml_repeat_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_can_repeat(b, a)); | |
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); | |
result->op = GGML_OP_REPEAT_BACK; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_concat | |
struct ggml_tensor * ggml_concat( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int dim) { | |
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); | |
int64_t ne[GGML_MAX_DIMS]; | |
for (int d = 0; d < GGML_MAX_DIMS; ++d) { | |
if (d == dim) { | |
ne[d] = a->ne[d] + b->ne[d]; | |
continue; | |
} | |
GGML_ASSERT(a->ne[d] == b->ne[d]); | |
ne[d] = a->ne[d]; | |
} | |
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); | |
ggml_set_op_params_i32(result, 0, dim); | |
result->op = GGML_OP_CONCAT; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_abs | |
struct ggml_tensor * ggml_abs( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS); | |
} | |
struct ggml_tensor * ggml_abs_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS); | |
} | |
// ggml_sgn | |
struct ggml_tensor * ggml_sgn( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN); | |
} | |
struct ggml_tensor * ggml_sgn_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN); | |
} | |
// ggml_neg | |
struct ggml_tensor * ggml_neg( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG); | |
} | |
struct ggml_tensor * ggml_neg_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG); | |
} | |
// ggml_step | |
struct ggml_tensor * ggml_step( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP); | |
} | |
struct ggml_tensor * ggml_step_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP); | |
} | |
// ggml_tanh | |
struct ggml_tensor * ggml_tanh( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH); | |
} | |
struct ggml_tensor * ggml_tanh_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH); | |
} | |
// ggml_elu | |
struct ggml_tensor * ggml_elu( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU); | |
} | |
struct ggml_tensor * ggml_elu_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU); | |
} | |
// ggml_relu | |
struct ggml_tensor * ggml_relu( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU); | |
} | |
struct ggml_tensor * ggml_relu_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU); | |
} | |
// ggml_leaky_relu | |
struct ggml_tensor * ggml_leaky_relu( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float negative_slope, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope)); | |
result->op = GGML_OP_LEAKY_RELU; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_sigmoid | |
struct ggml_tensor * ggml_sigmoid( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID); | |
} | |
struct ggml_tensor * ggml_sigmoid_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID); | |
} | |
// ggml_gelu | |
struct ggml_tensor * ggml_gelu( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU); | |
} | |
struct ggml_tensor * ggml_gelu_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU); | |
} | |
// ggml_gelu_quick | |
struct ggml_tensor * ggml_gelu_quick( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK); | |
} | |
struct ggml_tensor * ggml_gelu_quick_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK); | |
} | |
// ggml_silu | |
struct ggml_tensor * ggml_silu( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU); | |
} | |
struct ggml_tensor * ggml_silu_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU); | |
} | |
// ggml_silu_back | |
struct ggml_tensor * ggml_silu_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SILU_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml hardswish | |
struct ggml_tensor * ggml_hardswish( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH); | |
} | |
// ggml hardsigmoid | |
struct ggml_tensor * ggml_hardsigmoid( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); | |
} | |
// ggml exp | |
struct ggml_tensor * ggml_exp( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary(ctx, a, GGML_UNARY_OP_EXP); | |
} | |
struct ggml_tensor * ggml_exp_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP); | |
} | |
// ggml_norm | |
static struct ggml_tensor * ggml_norm_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, &eps, sizeof(eps)); | |
result->op = GGML_OP_NORM; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_norm( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps) { | |
return ggml_norm_impl(ctx, a, eps, false); | |
} | |
struct ggml_tensor * ggml_norm_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps) { | |
return ggml_norm_impl(ctx, a, eps, true); | |
} | |
// ggml_rms_norm | |
static struct ggml_tensor * ggml_rms_norm_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, &eps, sizeof(eps)); | |
result->op = GGML_OP_RMS_NORM; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_rms_norm( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps) { | |
return ggml_rms_norm_impl(ctx, a, eps, false); | |
} | |
struct ggml_tensor * ggml_rms_norm_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float eps) { | |
return ggml_rms_norm_impl(ctx, a, eps, true); | |
} | |
// ggml_rms_norm_back | |
struct ggml_tensor * ggml_rms_norm_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
float eps) { | |
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, &eps, sizeof(eps)); | |
result->op = GGML_OP_RMS_NORM_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_group_norm | |
static struct ggml_tensor * ggml_group_norm_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_groups, | |
float eps, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params_i32(result, 0, n_groups); | |
ggml_set_op_params_f32(result, 1, eps); | |
result->op = GGML_OP_GROUP_NORM; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_group_norm( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_groups, | |
float eps) { | |
return ggml_group_norm_impl(ctx, a, n_groups, eps, false); | |
} | |
struct ggml_tensor * ggml_group_norm_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_groups, | |
float eps) { | |
return ggml_group_norm_impl(ctx, a, n_groups, eps, true); | |
} | |
// ggml_mul_mat | |
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return (t0->ne[0] == t1->ne[0]) && | |
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable | |
(t1->ne[3]%t0->ne[3] == 0); | |
} | |
struct ggml_tensor * ggml_mul_mat( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_can_mul_mat(a, b)); | |
GGML_ASSERT(!ggml_is_transposed(a)); | |
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
result->op = GGML_OP_MUL_MAT; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
void ggml_mul_mat_set_prec( | |
struct ggml_tensor * a, | |
enum ggml_prec prec) { | |
GGML_ASSERT(a->op == GGML_OP_MUL_MAT); | |
const int32_t prec_i32 = (int32_t) prec; | |
ggml_set_op_params_i32(a, 0, prec_i32); | |
} | |
// ggml_mul_mat_id | |
/* | |
c = ggml_mul_mat_id(ctx, as, b, ids); | |
as -> [cols, rows, n_expert] | |
ids -> [n_experts_used, n_tokens] (i32) | |
b -> [cols, n_expert_used, n_tokens] | |
c -> [rows, n_expert_used, n_tokens] | |
in b, n_experts_used can be broadcasted to match the n_expert_used of ids | |
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids | |
*/ | |
struct ggml_tensor * ggml_mul_mat_id( | |
struct ggml_context * ctx, | |
struct ggml_tensor * as, | |
struct ggml_tensor * b, | |
struct ggml_tensor * ids) { | |
GGML_ASSERT(!ggml_is_transposed(as)); | |
GGML_ASSERT(ids->type == GGML_TYPE_I32); | |
GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert) | |
GGML_ASSERT(b->ne[3] == 1); // b is 3d | |
GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d | |
GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row | |
GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat | |
GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast | |
const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
result->op = GGML_OP_MUL_MAT_ID; | |
result->src[0] = as; | |
result->src[1] = b; | |
result->src[2] = ids; | |
return result; | |
} | |
// ggml_out_prod | |
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { | |
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); | |
return (t0->ne[1] == t1->ne[1]) && | |
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable | |
(t1->ne[3]%t0->ne[3] == 0); | |
} | |
struct ggml_tensor * ggml_out_prod( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_can_out_prod(a, b)); | |
GGML_ASSERT(!ggml_is_transposed(a)); | |
// a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3] | |
const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
result->op = GGML_OP_OUT_PROD; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_scale | |
static struct ggml_tensor * ggml_scale_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float s, | |
bool inplace) { | |
GGML_ASSERT(ggml_is_padded_1d(a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, &s, sizeof(s)); | |
result->op = GGML_OP_SCALE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_scale( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float s) { | |
return ggml_scale_impl(ctx, a, s, false); | |
} | |
struct ggml_tensor * ggml_scale_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float s) { | |
return ggml_scale_impl(ctx, a, s, true); | |
} | |
// ggml_set | |
static struct ggml_tensor * ggml_set_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset, | |
bool inplace) { | |
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b)); | |
// make a view of the destination | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
GGML_ASSERT(offset < (size_t)(1 << 30)); | |
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_SET; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_set( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false); | |
} | |
struct ggml_tensor * ggml_set_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true); | |
} | |
struct ggml_tensor * ggml_set_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false); | |
} | |
struct ggml_tensor * ggml_set_1d_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true); | |
} | |
struct ggml_tensor * ggml_set_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); | |
} | |
struct ggml_tensor * ggml_set_2d_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
size_t nb1, | |
size_t offset) { | |
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true); | |
} | |
// ggml_cpy | |
static struct ggml_tensor * ggml_cpy_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); | |
// make a view of the destination | |
struct ggml_tensor * result = ggml_view_tensor(ctx, b); | |
if (strlen(b->name) > 0) { | |
ggml_format_name(result, "%s (copy of %s)", b->name, a->name); | |
} else { | |
ggml_format_name(result, "%s (copy)", a->name); | |
} | |
result->op = GGML_OP_CPY; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_cpy( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_cpy_impl(ctx, a, b); | |
} | |
struct ggml_tensor * ggml_cast( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_type type) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); | |
ggml_format_name(result, "%s (copy)", a->name); | |
result->op = GGML_OP_CPY; | |
result->src[0] = a; | |
result->src[1] = result; | |
return result; | |
} | |
// ggml_cont | |
static struct ggml_tensor * ggml_cont_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); | |
ggml_format_name(result, "%s (cont)", a->name); | |
result->op = GGML_OP_CONT; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_cont( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_cont_impl(ctx, a); | |
} | |
// make contiguous, with new shape | |
GGML_API struct ggml_tensor * ggml_cont_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0) { | |
return ggml_cont_4d(ctx, a, ne0, 1, 1, 1); | |
} | |
GGML_API struct ggml_tensor * ggml_cont_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1) { | |
return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1); | |
} | |
GGML_API struct ggml_tensor * ggml_cont_3d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2) { | |
return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1); | |
} | |
struct ggml_tensor * ggml_cont_4d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2, | |
int64_t ne3) { | |
GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3)); | |
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); | |
ggml_format_name(result, "%s (cont)", a->name); | |
result->op = GGML_OP_CONT; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_reshape | |
struct ggml_tensor * ggml_reshape( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
// as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous. | |
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0); | |
ggml_format_name(result, "%s (reshaped)", a->name); | |
result->op = GGML_OP_RESHAPE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_reshape_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(ggml_nelements(a) == ne0); | |
const int64_t ne[1] = { ne0 }; | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0); | |
ggml_format_name(result, "%s (reshaped)", a->name); | |
result->op = GGML_OP_RESHAPE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_reshape_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(ggml_nelements(a) == ne0*ne1); | |
const int64_t ne[2] = { ne0, ne1 }; | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0); | |
ggml_format_name(result, "%s (reshaped)", a->name); | |
result->op = GGML_OP_RESHAPE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_reshape_3d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2); | |
const int64_t ne[3] = { ne0, ne1, ne2 }; | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0); | |
ggml_format_name(result, "%s (reshaped)", a->name); | |
result->op = GGML_OP_RESHAPE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_reshape_4d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2, | |
int64_t ne3) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3); | |
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0); | |
ggml_format_name(result, "%s (reshaped)", a->name); | |
result->op = GGML_OP_RESHAPE; | |
result->src[0] = a; | |
return result; | |
} | |
static struct ggml_tensor * ggml_view_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_dims, | |
const int64_t * ne, | |
size_t offset) { | |
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset); | |
ggml_format_name(result, "%s (view)", a->name); | |
ggml_set_op_params(result, &offset, sizeof(offset)); | |
result->op = GGML_OP_VIEW; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_view_1d | |
struct ggml_tensor * ggml_view_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
size_t offset) { | |
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset); | |
return result; | |
} | |
// ggml_view_2d | |
struct ggml_tensor * ggml_view_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
size_t nb1, | |
size_t offset) { | |
const int64_t ne[2] = { ne0, ne1 }; | |
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset); | |
result->nb[1] = nb1; | |
result->nb[2] = result->nb[1]*ne1; | |
result->nb[3] = result->nb[2]; | |
return result; | |
} | |
// ggml_view_3d | |
struct ggml_tensor * ggml_view_3d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2, | |
size_t nb1, | |
size_t nb2, | |
size_t offset) { | |
const int64_t ne[3] = { ne0, ne1, ne2 }; | |
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset); | |
result->nb[1] = nb1; | |
result->nb[2] = nb2; | |
result->nb[3] = result->nb[2]*ne2; | |
return result; | |
} | |
// ggml_view_4d | |
struct ggml_tensor * ggml_view_4d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int64_t ne0, | |
int64_t ne1, | |
int64_t ne2, | |
int64_t ne3, | |
size_t nb1, | |
size_t nb2, | |
size_t nb3, | |
size_t offset) { | |
const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; | |
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset); | |
result->nb[1] = nb1; | |
result->nb[2] = nb2; | |
result->nb[3] = nb3; | |
return result; | |
} | |
// ggml_permute | |
struct ggml_tensor * ggml_permute( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int axis0, | |
int axis1, | |
int axis2, | |
int axis3) { | |
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS); | |
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS); | |
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS); | |
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS); | |
GGML_ASSERT(axis0 != axis1); | |
GGML_ASSERT(axis0 != axis2); | |
GGML_ASSERT(axis0 != axis3); | |
GGML_ASSERT(axis1 != axis2); | |
GGML_ASSERT(axis1 != axis3); | |
GGML_ASSERT(axis2 != axis3); | |
struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
ggml_format_name(result, "%s (permuted)", a->name); | |
int ne[GGML_MAX_DIMS]; | |
int nb[GGML_MAX_DIMS]; | |
ne[axis0] = a->ne[0]; | |
ne[axis1] = a->ne[1]; | |
ne[axis2] = a->ne[2]; | |
ne[axis3] = a->ne[3]; | |
nb[axis0] = a->nb[0]; | |
nb[axis1] = a->nb[1]; | |
nb[axis2] = a->nb[2]; | |
nb[axis3] = a->nb[3]; | |
result->ne[0] = ne[0]; | |
result->ne[1] = ne[1]; | |
result->ne[2] = ne[2]; | |
result->ne[3] = ne[3]; | |
result->nb[0] = nb[0]; | |
result->nb[1] = nb[1]; | |
result->nb[2] = nb[2]; | |
result->nb[3] = nb[3]; | |
result->op = GGML_OP_PERMUTE; | |
result->src[0] = a; | |
int32_t params[] = { axis0, axis1, axis2, axis3 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
return result; | |
} | |
// ggml_transpose | |
struct ggml_tensor * ggml_transpose( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
ggml_format_name(result, "%s (transposed)", a->name); | |
result->ne[0] = a->ne[1]; | |
result->ne[1] = a->ne[0]; | |
result->nb[0] = a->nb[1]; | |
result->nb[1] = a->nb[0]; | |
result->op = GGML_OP_TRANSPOSE; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_get_rows | |
struct ggml_tensor * ggml_get_rows( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(a->ne[2] == b->ne[1]); | |
GGML_ASSERT(b->ne[3] == 1); | |
GGML_ASSERT(b->type == GGML_TYPE_I32); | |
// TODO: implement non F32 return | |
enum ggml_type type = GGML_TYPE_F32; | |
if (a->type == GGML_TYPE_I32) { | |
type = a->type; | |
} | |
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]); | |
result->op = GGML_OP_GET_ROWS; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_get_rows_back | |
struct ggml_tensor * ggml_get_rows_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c) { | |
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); | |
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0])); | |
// TODO: implement non F32 return | |
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); | |
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]); | |
result->op = GGML_OP_GET_ROWS_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_diag | |
struct ggml_tensor * ggml_diag( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
GGML_ASSERT(a->ne[1] == 1); | |
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne); | |
result->op = GGML_OP_DIAG; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_diag_mask_inf | |
static struct ggml_tensor * ggml_diag_mask_inf_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
int32_t params[] = { n_past }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_DIAG_MASK_INF; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_diag_mask_inf( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past) { | |
return ggml_diag_mask_inf_impl(ctx, a, n_past, false); | |
} | |
struct ggml_tensor * ggml_diag_mask_inf_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past) { | |
return ggml_diag_mask_inf_impl(ctx, a, n_past, true); | |
} | |
// ggml_diag_mask_zero | |
static struct ggml_tensor * ggml_diag_mask_zero_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
int32_t params[] = { n_past }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_DIAG_MASK_ZERO; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_diag_mask_zero( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past) { | |
return ggml_diag_mask_zero_impl(ctx, a, n_past, false); | |
} | |
struct ggml_tensor * ggml_diag_mask_zero_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int n_past) { | |
return ggml_diag_mask_zero_impl(ctx, a, n_past, true); | |
} | |
// ggml_soft_max | |
static struct ggml_tensor * ggml_soft_max_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * mask, | |
float scale, | |
float max_bias, | |
bool inplace) { | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
if (mask) { | |
GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32); | |
GGML_ASSERT(ggml_is_contiguous(mask)); | |
GGML_ASSERT(ggml_is_matrix(mask)); | |
GGML_ASSERT(mask->ne[0] == a->ne[0]); | |
GGML_ASSERT(mask->ne[1] >= a->ne[1]); | |
} | |
if (max_bias > 0.0f) { | |
GGML_ASSERT(mask); | |
} | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
float params[] = { scale, max_bias }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_SOFT_MAX; | |
result->src[0] = a; | |
result->src[1] = mask; | |
return result; | |
} | |
struct ggml_tensor * ggml_soft_max( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false); | |
} | |
struct ggml_tensor * ggml_soft_max_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a) { | |
return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true); | |
} | |
struct ggml_tensor * ggml_soft_max_ext( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * mask, | |
float scale, | |
float max_bias) { | |
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false); | |
} | |
// ggml_soft_max_ext_back | |
static struct ggml_tensor * ggml_soft_max_ext_back_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
float scale, | |
float max_bias, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
result->op = GGML_OP_SOFT_MAX_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
memcpy((float *) result->op_params + 0, &scale, sizeof(float)); | |
memcpy((float *) result->op_params + 1, &max_bias, sizeof(float)); | |
return result; | |
} | |
struct ggml_tensor * ggml_soft_max_ext_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
float scale, | |
float max_bias) { | |
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false); | |
} | |
struct ggml_tensor * ggml_soft_max_ext_back_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
float scale, | |
float max_bias) { | |
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true); | |
} | |
// ggml_rope | |
static struct ggml_tensor * ggml_rope_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow, | |
bool inplace) { | |
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); | |
GGML_ASSERT(ggml_is_vector(b)); | |
GGML_ASSERT(b->type == GGML_TYPE_I32); | |
GGML_ASSERT(a->ne[2] == b->ne[0]); | |
if (c) { | |
GGML_ASSERT(c->type == GGML_TYPE_F32); | |
GGML_ASSERT(c->ne[0] >= n_dims / 2); | |
} | |
int sections[4] = {0, 0, 0, 0}; | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig }; | |
memcpy(params + 5, &freq_base, sizeof(float)); | |
memcpy(params + 6, &freq_scale, sizeof(float)); | |
memcpy(params + 7, &ext_factor, sizeof(float)); | |
memcpy(params + 8, &attn_factor, sizeof(float)); | |
memcpy(params + 9, &beta_fast, sizeof(float)); | |
memcpy(params + 10, &beta_slow, sizeof(float)); | |
memcpy(params + 11, §ions, sizeof(int)*4); | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_ROPE; | |
result->src[0] = a; | |
result->src[1] = b; | |
result->src[2] = c; | |
return result; | |
} | |
struct ggml_tensor * ggml_rope( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int n_dims, | |
int mode) { | |
return ggml_rope_impl( | |
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false | |
); | |
} | |
struct ggml_tensor * ggml_rope_multi( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int sections[4], | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
// Multimodal Rotary Position Embedding | |
GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported"); | |
GGML_ASSERT(ggml_is_vector(b)); | |
GGML_ASSERT(b->type == GGML_TYPE_I32); | |
GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token | |
if (c) { | |
GGML_ASSERT(c->type == GGML_TYPE_F32); | |
GGML_ASSERT(c->ne[0] >= n_dims / 2); | |
} | |
struct ggml_tensor * result = ggml_dup_tensor(ctx, a); | |
int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig }; | |
memcpy(params + 5, &freq_base, sizeof(float)); | |
memcpy(params + 6, &freq_scale, sizeof(float)); | |
memcpy(params + 7, &ext_factor, sizeof(float)); | |
memcpy(params + 8, &attn_factor, sizeof(float)); | |
memcpy(params + 9, &beta_fast, sizeof(float)); | |
memcpy(params + 10, &beta_slow, sizeof(float)); | |
memcpy(¶ms[11], sections, sizeof(int)*4); | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_ROPE; | |
result->src[0] = a; | |
result->src[1] = b; | |
result->src[2] = c; | |
return result; | |
} | |
struct ggml_tensor * ggml_rope_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int n_dims, | |
int mode) { | |
return ggml_rope_impl( | |
ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true | |
); | |
} | |
struct ggml_tensor * ggml_rope_ext( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
return ggml_rope_impl( | |
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, | |
ext_factor, attn_factor, beta_fast, beta_slow, false | |
); | |
} | |
struct ggml_tensor * ggml_rope_ext_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
return ggml_rope_impl( | |
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, | |
ext_factor, attn_factor, beta_fast, beta_slow, true | |
); | |
} | |
struct ggml_tensor * ggml_rope_custom( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
return ggml_rope_impl( | |
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale, | |
ext_factor, attn_factor, beta_fast, beta_slow, false | |
); | |
} | |
struct ggml_tensor * ggml_rope_custom_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
return ggml_rope_impl( | |
ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale, | |
ext_factor, attn_factor, beta_fast, beta_slow, true | |
); | |
} | |
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get | |
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` | |
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) { | |
return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base)); | |
} | |
void ggml_rope_yarn_corr_dims( | |
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2] | |
) { | |
// start and end correction dims | |
float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base)); | |
float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base)); | |
dims[0] = MAX(0, start); | |
dims[1] = MIN(n_dims - 1, end); | |
} | |
// ggml_rope_back | |
struct ggml_tensor * ggml_rope_ext_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
struct ggml_tensor * result = ggml_rope_ext( | |
ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); | |
result->op = GGML_OP_ROPE_BACK; | |
return result; | |
} | |
struct ggml_tensor * ggml_rope_multi_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
int n_dims, | |
int sections[4], | |
int mode, | |
int n_ctx_orig, | |
float freq_base, | |
float freq_scale, | |
float ext_factor, | |
float attn_factor, | |
float beta_fast, | |
float beta_slow) { | |
struct ggml_tensor * result = ggml_rope_multi( | |
ctx, a, b, c, n_dims, sections, mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); | |
result->op = GGML_OP_ROPE_BACK; | |
return result; | |
} | |
// ggml_clamp | |
struct ggml_tensor * ggml_clamp( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
float min, | |
float max) { | |
// TODO: when implement backward, fix this: | |
struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
float params[] = { min, max }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_CLAMP; | |
result->src[0] = a; | |
return result; | |
} | |
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { | |
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; | |
} | |
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] | |
// a: [OC,IC, KH, KW] | |
// b: [N, IC, IH, IW] | |
// result: [N, OH, OW, IC*KH*KW] | |
struct ggml_tensor * ggml_im2col( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int s1, | |
int p0, | |
int p1, | |
int d0, | |
int d1, | |
bool is_2D, | |
enum ggml_type dst_type) { | |
if (is_2D) { | |
GGML_ASSERT(a->ne[2] == b->ne[2]); | |
} else { | |
//GGML_ASSERT(b->ne[1] % a->ne[1] == 0); | |
GGML_ASSERT(b->ne[1] == a->ne[1]); | |
GGML_ASSERT(b->ne[3] == 1); | |
} | |
const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0; | |
const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); | |
GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a"); | |
GGML_ASSERT((OW > 0) && "b too small compared to a"); | |
const int64_t ne[4] = { | |
is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0], | |
OW, | |
is_2D ? OH : b->ne[2], | |
is_2D ? b->ne[3] : 1, | |
}; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); | |
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_IM2COL; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_im2col_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int64_t * ne, | |
int s0, | |
int s1, | |
int p0, | |
int p1, | |
int d0, | |
int d1, | |
bool is_2D) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_IM2COL_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_conv_1d | |
struct ggml_tensor * ggml_conv_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int p0, | |
int d0) { | |
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K] | |
struct ggml_tensor * result = | |
ggml_mul_mat(ctx, | |
ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K] | |
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K] | |
result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL] | |
return result; | |
} | |
// ggml_conv_1d_ph | |
struct ggml_tensor* ggml_conv_1d_ph( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s, | |
int d) { | |
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); | |
} | |
// ggml_conv_1d_dw | |
struct ggml_tensor * ggml_conv_1d_dw( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int p0, | |
int d0) { | |
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], 1, a->ne[1], a->ne[2]); | |
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, b, b->ne[0], 1, b->ne[1], b->ne[2]); | |
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, new_b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); | |
struct ggml_tensor * result = ggml_mul_mat(ctx, im2col, a); | |
result = ggml_reshape_3d(ctx, result, b->ne[0], b->ne[1], 1); | |
return result; | |
} | |
// ggml_conv_1d_dw_ph | |
struct ggml_tensor * ggml_conv_1d_dw_ph( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int d0) { | |
return ggml_conv_1d_dw(ctx, a, b, s0, a->ne[0] / 2, d0); | |
} | |
// ggml_conv_transpose_1d | |
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { | |
return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; | |
} | |
GGML_API struct ggml_tensor * ggml_conv_transpose_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int p0, | |
int d0) { | |
GGML_ASSERT(ggml_is_matrix(b)); | |
GGML_ASSERT(a->ne[2] == b->ne[1]); | |
GGML_ASSERT(a->ne[3] == 1); | |
GGML_ASSERT(p0 == 0); | |
GGML_ASSERT(d0 == 1); | |
const int64_t ne[4] = { | |
ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/), | |
a->ne[1], b->ne[2], 1, | |
}; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
int32_t params[] = { s0, p0, d0 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_CONV_TRANSPOSE_1D; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_conv_2d | |
// a: [OC,IC, KH, KW] | |
// b: [N, IC, IH, IW] | |
// result: [N, OC, OH, OW] | |
struct ggml_tensor * ggml_conv_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int s1, | |
int p0, | |
int p1, | |
int d0, | |
int d1) { | |
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW] | |
struct ggml_tensor * result = | |
ggml_mul_mat(ctx, | |
ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW] | |
ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW] | |
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW] | |
result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW] | |
return result; | |
} | |
// ggml_conv_2d_sk_p0 | |
struct ggml_tensor * ggml_conv_2d_sk_p0( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1); | |
} | |
// ggml_conv_2d_s1_ph | |
struct ggml_tensor * ggml_conv_2d_s1_ph( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1); | |
} | |
// ggml_conv_2d_dw | |
struct ggml_tensor * ggml_conv_2d_dw( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int s0, | |
int s1, | |
int p0, | |
int p1, | |
int d0, | |
int d1) { | |
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); | |
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, | |
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), | |
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW] | |
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] | |
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW] | |
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); | |
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] | |
return result; | |
} | |
// ggml_conv_transpose_2d_p0 | |
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) { | |
return (ins - 1) * s - 2 * p + ks; | |
} | |
struct ggml_tensor * ggml_conv_transpose_2d_p0( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
int stride) { | |
GGML_ASSERT(a->ne[3] == b->ne[2]); | |
const int64_t ne[4] = { | |
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/), | |
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/), | |
a->ne[2], b->ne[3], | |
}; | |
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
ggml_set_op_params_i32(result, 0, stride); | |
result->op = GGML_OP_CONV_TRANSPOSE_2D; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_pool_* | |
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) { | |
return (ins + 2 * p - ks) / s + 1; | |
} | |
// ggml_pool_1d | |
struct ggml_tensor * ggml_pool_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_op_pool op, | |
int k0, | |
int s0, | |
int p0) { | |
const int64_t ne[4] = { | |
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), | |
a->ne[1], | |
a->ne[2], | |
a->ne[3], | |
}; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
int32_t params[] = { op, k0, s0, p0 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_POOL_1D; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_pool_2d | |
struct ggml_tensor * ggml_pool_2d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_op_pool op, | |
int k0, | |
int k1, | |
int s0, | |
int s1, | |
float p0, | |
float p1) { | |
struct ggml_tensor * result; | |
const int64_t ne[4] = { | |
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), | |
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1), | |
a->ne[2], | |
a->ne[3], | |
}; | |
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_POOL_2D; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_pool_2d_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * af, | |
enum ggml_op_pool op, | |
int k0, | |
int k1, | |
int s0, | |
int s1, | |
float p0, | |
float p1) { | |
struct ggml_tensor * result; | |
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne); | |
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_POOL_2D_BACK; | |
result->src[0] = a; | |
result->src[1] = af; | |
return result; | |
} | |
// ggml_upscale | |
static struct ggml_tensor * ggml_upscale_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int ne0, | |
int ne1, | |
int ne2, | |
int ne3) { | |
GGML_ASSERT(a->ne[0] <= ne0); | |
GGML_ASSERT(a->ne[1] <= ne1); | |
GGML_ASSERT(a->ne[2] <= ne2); | |
GGML_ASSERT(a->ne[3] <= ne3); | |
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); | |
result->op = GGML_OP_UPSCALE; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_upscale( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int scale_factor) { | |
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]); | |
} | |
struct ggml_tensor * ggml_upscale_ext( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int ne0, | |
int ne1, | |
int ne2, | |
int ne3) { | |
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3); | |
} | |
// ggml_pad | |
struct ggml_tensor * ggml_pad( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int p0, | |
int p1, | |
int p2, | |
int p3) { | |
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, | |
a->ne[0] + p0, | |
a->ne[1] + p1, | |
a->ne[2] + p2, | |
a->ne[3] + p3); | |
result->op = GGML_OP_PAD; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_pad_reflect_1d | |
struct ggml_tensor * ggml_pad_reflect_1d( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int p0, | |
int p1) { | |
GGML_ASSERT(p0 >= 0); | |
GGML_ASSERT(p1 >= 0); | |
GGML_ASSERT(p0 < a->ne[0]); // padding length on each size must be less than the | |
GGML_ASSERT(p1 < a->ne[0]); // existing length of the dimension being padded | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(a->type == GGML_TYPE_F32); | |
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, | |
a->ne[0] + p0 + p1, | |
a->ne[1], | |
a->ne[2], | |
a->ne[3]); | |
int32_t params[] = { p0, p1 }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_PAD_REFLECT_1D; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_arange | |
struct ggml_tensor * ggml_arange( | |
struct ggml_context * ctx, | |
float start, | |
float stop, | |
float step) { | |
GGML_ASSERT(stop > start); | |
const int64_t steps = (int64_t) ceilf((stop - start) / step); | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps); | |
ggml_set_op_params_f32(result, 0, start); | |
ggml_set_op_params_f32(result, 1, stop); | |
ggml_set_op_params_f32(result, 2, step); | |
result->op = GGML_OP_ARANGE; | |
return result; | |
} | |
// ggml_timestep_embedding | |
struct ggml_tensor * ggml_timestep_embedding( | |
struct ggml_context * ctx, | |
struct ggml_tensor * timesteps, | |
int dim, | |
int max_period) { | |
int actual_dim = dim; | |
if (dim % 2 != 0) { | |
actual_dim = dim + 1; | |
} | |
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]); | |
ggml_set_op_params_i32(result, 0, dim); | |
ggml_set_op_params_i32(result, 1, max_period); | |
result->op = GGML_OP_TIMESTEP_EMBEDDING; | |
result->src[0] = timesteps; | |
return result; | |
} | |
// ggml_argsort | |
struct ggml_tensor * ggml_argsort( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_sort_order order) { | |
GGML_ASSERT(a->ne[0] <= INT32_MAX); | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne); | |
ggml_set_op_params_i32(result, 0, (int32_t) order); | |
result->op = GGML_OP_ARGSORT; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_top_k | |
struct ggml_tensor * ggml_top_k( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int k) { | |
GGML_ASSERT(a->ne[0] >= k); | |
struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC); | |
result = ggml_view_4d(ctx, result, | |
k, result->ne[1], result->ne[2], result->ne[3], | |
result->nb[1], result->nb[2], result->nb[3], | |
0); | |
return result; | |
} | |
// ggml_flash_attn_ext | |
struct ggml_tensor * ggml_flash_attn_ext( | |
struct ggml_context * ctx, | |
struct ggml_tensor * q, | |
struct ggml_tensor * k, | |
struct ggml_tensor * v, | |
struct ggml_tensor * mask, | |
float scale, | |
float max_bias, | |
float logit_softcap) { | |
GGML_ASSERT(ggml_can_mul_mat(k, q)); | |
// TODO: check if vT can be multiplied by (k*qT) | |
if (mask) { | |
GGML_ASSERT(ggml_is_contiguous(mask)); | |
GGML_ASSERT(mask->ne[2] == 1); | |
GGML_ASSERT(mask->ne[3] == 1); | |
GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) && | |
"the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big"); | |
//GGML_ASSERT(ggml_can_repeat_rows(mask, qk)); | |
} | |
if (max_bias > 0.0f) { | |
GGML_ASSERT(mask); | |
} | |
// permute(0, 2, 1, 3) | |
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
float params[] = { scale, max_bias, logit_softcap }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_FLASH_ATTN_EXT; | |
result->src[0] = q; | |
result->src[1] = k; | |
result->src[2] = v; | |
result->src[3] = mask; | |
return result; | |
} | |
void ggml_flash_attn_ext_set_prec( | |
struct ggml_tensor * a, | |
enum ggml_prec prec) { | |
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); | |
const int32_t prec_i32 = (int32_t) prec; | |
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second | |
} | |
enum ggml_prec ggml_flash_attn_ext_get_prec( | |
const struct ggml_tensor * a) { | |
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT); | |
const int32_t prec_i32 = ggml_get_op_params_i32(a, 3); | |
return (enum ggml_prec) prec_i32; | |
} | |
// ggml_flash_attn_back | |
struct ggml_tensor * ggml_flash_attn_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * q, | |
struct ggml_tensor * k, | |
struct ggml_tensor * v, | |
struct ggml_tensor * d, | |
bool masked) { | |
GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes"); | |
GGML_ASSERT(ggml_can_mul_mat(k, q)); | |
// TODO: check if vT can be multiplied by (k*qT) | |
// d shape [D,N,ne2,ne3] | |
// q shape [D,N,ne2,ne3] | |
// k shape [D,M,kvne2,ne3] | |
// v shape [M,D,kvne2,ne3] | |
const int64_t D = q->ne[0]; | |
const int64_t N = q->ne[1]; | |
const int64_t M = k->ne[1]; | |
const int64_t ne2 = q->ne[2]; | |
const int64_t ne3 = q->ne[3]; | |
const int64_t kvne2 = k->ne[2]; | |
GGML_ASSERT(k->ne[0] == D); | |
GGML_ASSERT(v->ne[0] == M); | |
GGML_ASSERT(v->ne[1] == D); | |
GGML_ASSERT(d->ne[0] == D); | |
GGML_ASSERT(d->ne[1] == N); | |
GGML_ASSERT(k->ne[2] == kvne2); | |
GGML_ASSERT(k->ne[3] == ne3); | |
GGML_ASSERT(v->ne[2] == kvne2); | |
GGML_ASSERT(v->ne[3] == ne3); | |
GGML_ASSERT(d->ne[2] == ne2); | |
GGML_ASSERT(d->ne[3] == ne3); | |
GGML_ASSERT(ne2 % kvne2 == 0); | |
// store gradients of q, k and v as continuous tensors concatenated in result. | |
// note: v and gradv are actually transposed, i.e. v->ne[0] != D. | |
const int64_t elem_q = ggml_nelements(q); | |
const int64_t elem_k = ggml_nelements(k); | |
const int64_t elem_v = ggml_nelements(v); | |
enum ggml_type result_type = GGML_TYPE_F32; | |
GGML_ASSERT(ggml_blck_size(result_type) == 1); | |
const size_t tsize = ggml_type_size(result_type); | |
const size_t offs_q = 0; | |
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); | |
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); | |
const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN); | |
const size_t nelements = (end + tsize - 1)/tsize; | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements); | |
int32_t masked_i = masked ? 1 : 0; | |
ggml_set_op_params(result, &masked_i, sizeof(masked_i)); | |
result->op = GGML_OP_FLASH_ATTN_BACK; | |
result->src[0] = q; | |
result->src[1] = k; | |
result->src[2] = v; | |
result->src[3] = d; | |
return result; | |
} | |
// ggml_ssm_conv | |
struct ggml_tensor * ggml_ssm_conv( | |
struct ggml_context * ctx, | |
struct ggml_tensor * sx, | |
struct ggml_tensor * c) { | |
GGML_ASSERT(ggml_is_3d(sx)); | |
GGML_ASSERT(ggml_is_matrix(c)); | |
const int64_t d_conv = c->ne[0]; | |
const int64_t d_inner = c->ne[1]; | |
const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence | |
const int64_t n_s = sx->ne[2]; | |
// TODO: maybe support other strides than 1? | |
// FIXME: this is always true? | |
GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t); | |
GGML_ASSERT(sx->ne[1] == d_inner); | |
GGML_ASSERT(n_t >= 0); | |
struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s); | |
result->op = GGML_OP_SSM_CONV; | |
result->src[0] = sx; | |
result->src[1] = c; | |
return result; | |
} | |
// ggml_ssm_scan | |
struct ggml_tensor * ggml_ssm_scan( | |
struct ggml_context * ctx, | |
struct ggml_tensor * s, | |
struct ggml_tensor * x, | |
struct ggml_tensor * dt, | |
struct ggml_tensor * A, | |
struct ggml_tensor * B, | |
struct ggml_tensor * C) { | |
GGML_ASSERT(ggml_is_contiguous(s)); | |
GGML_ASSERT(ggml_is_contiguous(x)); | |
GGML_ASSERT(ggml_is_contiguous(dt)); | |
GGML_ASSERT(ggml_is_contiguous(A)); | |
GGML_ASSERT(ggml_is_matrix(A)); | |
GGML_ASSERT(ggml_is_3d(B)); | |
GGML_ASSERT(ggml_is_3d(s)); | |
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type)); | |
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type)); | |
GGML_ASSERT(ggml_are_same_shape(x, dt)); | |
GGML_ASSERT(ggml_are_same_shape(B, C)); | |
{ | |
const int64_t d_state = s->ne[0]; | |
const int64_t d_inner = s->ne[1]; | |
const int64_t n_seq_tokens = x->ne[1]; | |
const int64_t n_seqs = x->ne[2]; | |
GGML_ASSERT(s->ne[2] == n_seqs); | |
GGML_ASSERT(x->ne[0] == d_inner); | |
GGML_ASSERT(A->ne[0] == d_state); | |
GGML_ASSERT(A->ne[1] == d_inner); | |
GGML_ASSERT(B->ne[0] == d_state); | |
GGML_ASSERT(B->ne[1] == n_seq_tokens); | |
GGML_ASSERT(B->ne[2] == n_seqs); | |
} | |
// concatenated y + ssm_states | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s)); | |
result->op = GGML_OP_SSM_SCAN; | |
result->src[0] = s; | |
result->src[1] = x; | |
result->src[2] = dt; | |
result->src[3] = A; | |
result->src[4] = B; | |
result->src[5] = C; | |
return result; | |
} | |
// ggml_win_part | |
struct ggml_tensor * ggml_win_part( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int w) { | |
GGML_ASSERT(a->ne[3] == 1); | |
GGML_ASSERT(a->type == GGML_TYPE_F32); | |
// padding | |
const int px = (w - a->ne[1]%w)%w; | |
const int py = (w - a->ne[2]%w)%w; | |
const int npx = (px + a->ne[1])/w; | |
const int npy = (py + a->ne[2])/w; | |
const int np = npx*npy; | |
const int64_t ne[4] = { a->ne[0], w, w, np, }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
int32_t params[] = { npx, npy, w }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_WIN_PART; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_win_unpart | |
struct ggml_tensor * ggml_win_unpart( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int w0, | |
int h0, | |
int w) { | |
GGML_ASSERT(a->type == GGML_TYPE_F32); | |
const int64_t ne[4] = { a->ne[0], w0, h0, 1, }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); | |
int32_t params[] = { w }; | |
ggml_set_op_params(result, params, sizeof(params)); | |
result->op = GGML_OP_WIN_UNPART; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_get_rel_pos | |
struct ggml_tensor * ggml_get_rel_pos( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
int qh, | |
int kh) { | |
GGML_ASSERT(qh == kh); | |
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]); | |
const int64_t ne[4] = { a->ne[0], kh, qh, 1, }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne); | |
result->op = GGML_OP_GET_REL_POS; | |
result->src[0] = a; | |
return result; | |
} | |
// ggml_add_rel_pos | |
static struct ggml_tensor * ggml_add_rel_pos_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * pw, | |
struct ggml_tensor * ph, | |
bool inplace) { | |
GGML_ASSERT(ggml_are_same_shape(pw, ph)); | |
GGML_ASSERT(ggml_is_contiguous(a)); | |
GGML_ASSERT(ggml_is_contiguous(pw)); | |
GGML_ASSERT(ggml_is_contiguous(ph)); | |
GGML_ASSERT(ph->type == GGML_TYPE_F32); | |
GGML_ASSERT(pw->type == GGML_TYPE_F32); | |
GGML_ASSERT(pw->ne[3] == a->ne[2]); | |
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]); | |
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0); | |
result->op = GGML_OP_ADD_REL_POS; | |
result->src[0] = a; | |
result->src[1] = pw; | |
result->src[2] = ph; | |
return result; | |
} | |
struct ggml_tensor * ggml_add_rel_pos( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * pw, | |
struct ggml_tensor * ph) { | |
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false); | |
} | |
struct ggml_tensor * ggml_add_rel_pos_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * pw, | |
struct ggml_tensor * ph) { | |
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); | |
} | |
// ggml_rwkv_wkv6 | |
struct ggml_tensor * ggml_rwkv_wkv6( | |
struct ggml_context * ctx, | |
struct ggml_tensor * k, | |
struct ggml_tensor * v, | |
struct ggml_tensor * r, | |
struct ggml_tensor * tf, | |
struct ggml_tensor * td, | |
struct ggml_tensor * state) { | |
GGML_ASSERT(ggml_is_contiguous(k)); | |
GGML_ASSERT(ggml_is_contiguous(v)); | |
GGML_ASSERT(ggml_is_contiguous(r)); | |
GGML_ASSERT(ggml_is_contiguous(tf)); | |
GGML_ASSERT(ggml_is_contiguous(td)); | |
GGML_ASSERT(ggml_is_contiguous(state)); | |
const int64_t S = k->ne[0]; | |
const int64_t H = k->ne[1]; | |
const int64_t n_tokens = k->ne[2]; | |
const int64_t n_seqs = state->ne[1]; | |
{ | |
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); | |
GGML_ASSERT(r->ne[0] == S && r->ne[1] == H && r->ne[2] == n_tokens); | |
GGML_ASSERT(td->ne[0] == S && td->ne[1] == H && td->ne[2] == n_tokens); | |
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); | |
} | |
// concat output and new_state | |
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
result->op = GGML_OP_RWKV_WKV6; | |
result->src[0] = k; | |
result->src[1] = v; | |
result->src[2] = r; | |
result->src[3] = tf; | |
result->src[4] = td; | |
result->src[5] = state; | |
return result; | |
} | |
// ggml_gated_linear_attn | |
struct ggml_tensor * ggml_gated_linear_attn( | |
struct ggml_context * ctx, | |
struct ggml_tensor * k, | |
struct ggml_tensor * v, | |
struct ggml_tensor * q, | |
struct ggml_tensor * g, | |
struct ggml_tensor * state, | |
float scale) { | |
GGML_ASSERT(ggml_is_contiguous(k)); | |
GGML_ASSERT(ggml_is_contiguous(v)); | |
GGML_ASSERT(ggml_is_contiguous(q)); | |
GGML_ASSERT(ggml_is_contiguous(g)); | |
GGML_ASSERT(ggml_is_contiguous(state)); | |
const int64_t S = k->ne[0]; | |
const int64_t H = k->ne[1]; | |
const int64_t n_tokens = k->ne[2]; | |
const int64_t n_seqs = state->ne[1]; | |
{ | |
GGML_ASSERT(v->ne[0] == S && v->ne[1] == H && v->ne[2] == n_tokens); | |
GGML_ASSERT(q->ne[0] == S && q->ne[1] == H && q->ne[2] == n_tokens); | |
GGML_ASSERT(g->ne[0] == S && g->ne[1] == H && g->ne[2] == n_tokens); | |
GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); | |
} | |
// concat output and new_state | |
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; | |
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); | |
ggml_set_op_params_f32(result, 0, scale); | |
result->op = GGML_OP_GATED_LINEAR_ATTN; | |
result->src[0] = k; | |
result->src[1] = v; | |
result->src[2] = q; | |
result->src[3] = g; | |
result->src[4] = state; | |
return result; | |
} | |
// ggml_unary | |
static struct ggml_tensor * ggml_unary_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_unary_op op, | |
bool inplace) { | |
GGML_ASSERT(ggml_is_contiguous_1(a)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params_i32(result, 0, (int32_t) op); | |
result->op = GGML_OP_UNARY; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_unary( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_unary_op op) { | |
return ggml_unary_impl(ctx, a, op, false); | |
} | |
struct ggml_tensor * ggml_unary_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
enum ggml_unary_op op) { | |
return ggml_unary_impl(ctx, a, op, true); | |
} | |
// ggml_map_unary | |
static struct ggml_tensor * ggml_map_unary_impl_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_unary_op_f32_t fun, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); | |
result->op = GGML_OP_MAP_UNARY; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_unary_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_unary_op_f32_t fun) { | |
return ggml_map_unary_impl_f32(ctx, a, fun, false); | |
} | |
struct ggml_tensor * ggml_map_unary_inplace_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_unary_op_f32_t fun) { | |
return ggml_map_unary_impl_f32(ctx, a, fun, true); | |
} | |
// ggml_map_binary | |
static struct ggml_tensor * ggml_map_binary_impl_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_binary_op_f32_t fun, | |
bool inplace) { | |
GGML_ASSERT(ggml_are_same_shape(a, b)); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); | |
result->op = GGML_OP_MAP_BINARY; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_binary_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_binary_op_f32_t fun) { | |
return ggml_map_binary_impl_f32(ctx, a, b, fun, false); | |
} | |
struct ggml_tensor * ggml_map_binary_inplace_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_binary_op_f32_t fun) { | |
return ggml_map_binary_impl_f32(ctx, a, b, fun, true); | |
} | |
// ggml_map_custom1_f32 | |
static struct ggml_tensor * ggml_map_custom1_impl_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_f32_t fun, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); | |
result->op = GGML_OP_MAP_CUSTOM1_F32; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom1_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_f32_t fun) { | |
return ggml_map_custom1_impl_f32(ctx, a, fun, false); | |
} | |
struct ggml_tensor * ggml_map_custom1_inplace_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_f32_t fun) { | |
return ggml_map_custom1_impl_f32(ctx, a, fun, true); | |
} | |
// ggml_map_custom2_f32 | |
static struct ggml_tensor * ggml_map_custom2_impl_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_f32_t fun, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); | |
result->op = GGML_OP_MAP_CUSTOM2_F32; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom2_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_f32_t fun) { | |
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false); | |
} | |
struct ggml_tensor * ggml_map_custom2_inplace_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_f32_t fun) { | |
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true); | |
} | |
// ggml_map_custom3_f32 | |
static struct ggml_tensor * ggml_map_custom3_impl_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_f32_t fun, | |
bool inplace) { | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); | |
result->op = GGML_OP_MAP_CUSTOM3_F32; | |
result->src[0] = a; | |
result->src[1] = b; | |
result->src[2] = c; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom3_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_f32_t fun) { | |
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false); | |
} | |
struct ggml_tensor * ggml_map_custom3_inplace_f32( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_f32_t fun) { | |
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true); | |
} | |
// ggml_map_custom1 | |
static struct ggml_tensor * ggml_map_custom1_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_t fun, | |
int n_tasks, | |
void * userdata, | |
bool inplace) { | |
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
struct ggml_map_custom1_op_params params = { | |
/*.fun =*/ fun, | |
/*.n_tasks =*/ n_tasks, | |
/*.userdata =*/ userdata | |
}; | |
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); | |
result->op = GGML_OP_MAP_CUSTOM1; | |
result->src[0] = a; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom1( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false); | |
} | |
struct ggml_tensor * ggml_map_custom1_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
const ggml_custom1_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true); | |
} | |
// ggml_map_custom2 | |
static struct ggml_tensor * ggml_map_custom2_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_t fun, | |
int n_tasks, | |
void * userdata, | |
bool inplace) { | |
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
struct ggml_map_custom2_op_params params = { | |
/*.fun =*/ fun, | |
/*.n_tasks =*/ n_tasks, | |
/*.userdata =*/ userdata | |
}; | |
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); | |
result->op = GGML_OP_MAP_CUSTOM2; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom2( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false); | |
} | |
struct ggml_tensor * ggml_map_custom2_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
const ggml_custom2_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true); | |
} | |
// ggml_map_custom3 | |
static struct ggml_tensor * ggml_map_custom3_impl( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_t fun, | |
int n_tasks, | |
void * userdata, | |
bool inplace) { | |
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); | |
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); | |
struct ggml_map_custom3_op_params params = { | |
/*.fun =*/ fun, | |
/*.n_tasks =*/ n_tasks, | |
/*.userdata =*/ userdata | |
}; | |
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); | |
result->op = GGML_OP_MAP_CUSTOM3; | |
result->src[0] = a; | |
result->src[1] = b; | |
result->src[2] = c; | |
return result; | |
} | |
struct ggml_tensor * ggml_map_custom3( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false); | |
} | |
struct ggml_tensor * ggml_map_custom3_inplace( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c, | |
const ggml_custom3_op_t fun, | |
int n_tasks, | |
void * userdata) { | |
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true); | |
} | |
// ggml_cross_entropy_loss | |
struct ggml_tensor * ggml_cross_entropy_loss( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b) { | |
GGML_ASSERT(ggml_are_same_shape(a, b)); | |
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); | |
result->op = GGML_OP_CROSS_ENTROPY_LOSS; | |
result->src[0] = a; | |
result->src[1] = b; | |
return result; | |
} | |
// ggml_cross_entropy_loss_back | |
struct ggml_tensor * ggml_cross_entropy_loss_back( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * b, | |
struct ggml_tensor * c) { | |
GGML_ASSERT(ggml_is_scalar(a)); | |
GGML_ASSERT(ggml_are_same_shape(b, c)); | |
struct ggml_tensor * result = ggml_dup_tensor(ctx, b); | |
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK; | |
result->src[0] = a; | |
result->src[1] = b; | |
result->src[2] = c; | |
return result; | |
} | |
// opt_step_adamw | |
struct ggml_tensor * ggml_opt_step_adamw( | |
struct ggml_context * ctx, | |
struct ggml_tensor * a, | |
struct ggml_tensor * grad, | |
struct ggml_tensor * m, | |
struct ggml_tensor * v, | |
struct ggml_tensor * adamw_params) { | |
GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM); | |
GGML_ASSERT(ggml_are_same_shape(a, grad)); | |
GGML_ASSERT(ggml_are_same_shape(a, m)); | |
GGML_ASSERT(ggml_are_same_shape(a, v)); | |
GGML_ASSERT(adamw_params->type == GGML_TYPE_F32); | |
GGML_ASSERT(ggml_nelements(adamw_params) == 7); | |
struct ggml_tensor * result = ggml_view_tensor(ctx, a); | |
result->op = GGML_OP_OPT_STEP_ADAMW; | |
result->src[0] = a; | |
result->src[1] = grad; | |
result->src[2] = m; | |
result->src[3] = v; | |
result->src[4] = adamw_params; | |
return result; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
struct ggml_hash_set ggml_hash_set_new(size_t size) { | |
size = ggml_hash_size(size); | |
struct ggml_hash_set result; | |
result.size = size; | |
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size); | |
result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t)); | |
return result; | |
} | |
void ggml_hash_set_reset(struct ggml_hash_set * hash_set) { | |
memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size)); | |
} | |
void ggml_hash_set_free(struct ggml_hash_set * hash_set) { | |
GGML_FREE(hash_set->used); | |
GGML_FREE(hash_set->keys); | |
} | |
size_t ggml_hash_size(size_t min_sz) { | |
// next primes after powers of two | |
static const size_t primes[] = { | |
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, | |
2053, 4099, 8209, 16411, 32771, 65537, 131101, | |
262147, 524309, 1048583, 2097169, 4194319, 8388617, | |
16777259, 33554467, 67108879, 134217757, 268435459, | |
536870923, 1073741827, 2147483659 | |
}; | |
static const size_t n_primes = sizeof(primes)/sizeof(primes[0]); | |
// find the smallest prime that is larger or equal than min_sz | |
size_t l = 0; | |
size_t r = n_primes; | |
while (l < r) { | |
size_t m = (l + r)/2; | |
if (primes[m] < min_sz) { | |
l = m + 1; | |
} else { | |
r = m; | |
} | |
} | |
size_t sz = l < n_primes ? primes[l] : min_sz | 1; | |
return sz; | |
} | |
struct hash_map { | |
struct ggml_hash_set set; | |
struct ggml_tensor ** vals; | |
}; | |
static struct hash_map * ggml_new_hash_map(size_t size) { | |
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map)); | |
result->set = ggml_hash_set_new(size); | |
result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *)); | |
return result; | |
} | |
static void ggml_hash_map_free(struct hash_map * map) { | |
ggml_hash_set_free(&map->set); | |
GGML_FREE(map->vals); | |
GGML_FREE(map); | |
} | |
// utility functions to change gradients | |
// isrc is the index of tensor in cgraph->visited_has_set.keys | |
// the corresponding gradient (accumulators) are also at position isrc | |
// if tensor has a gradient accumulator, modify that accumulator in-place | |
// else if there is no gradient for tensor, set the corresponding value | |
// else, just add/subtract/etc. the gradients | |
static void ggml_add_or_set( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * cgraph, | |
size_t isrc, | |
struct ggml_tensor * tensor) { | |
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; | |
GGML_ASSERT(src); | |
if (cgraph->grads[isrc]) { | |
cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]); | |
} else { | |
cgraph->grads[isrc] = tensor; | |
} | |
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); | |
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); | |
} | |
static void ggml_acc_or_set( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * cgraph, | |
size_t isrc, | |
struct ggml_tensor * tensor, | |
const size_t nb1, | |
const size_t nb2, | |
const size_t nb3, | |
const size_t offset) { | |
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; | |
GGML_ASSERT(src); | |
if (cgraph->grads[isrc]) { | |
cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]); | |
} else { | |
struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN | |
cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false); | |
} | |
ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name); | |
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); | |
} | |
static void ggml_add1_or_set( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * cgraph, | |
size_t isrc, | |
struct ggml_tensor * tensor) { | |
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; | |
GGML_ASSERT(src); | |
if (cgraph->grads[isrc]) { | |
cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]); | |
} else { | |
cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src); | |
} | |
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); | |
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); | |
} | |
static void ggml_sub_or_set( | |
struct ggml_context * ctx, | |
struct ggml_cgraph * cgraph, | |
size_t isrc, | |
struct ggml_tensor * tensor) { | |
struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc]; | |
GGML_ASSERT(src); | |
if (cgraph->grads[isrc]) { | |
cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]); | |
} else { | |
cgraph->grads[isrc] = ggml_neg(ctx, tensor); | |
} | |
ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name); | |
ggml_build_forward_expand(cgraph, cgraph->grads[isrc]); | |
} | |
static void ggml_compute_backward( | |
struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) { | |
struct ggml_tensor * tensor = cgraph->nodes[i]; | |
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, tensor); | |
if (!grad) { | |
return; | |
} | |
struct ggml_tensor * src0 = tensor->src[0]; | |
struct ggml_tensor * src1 = tensor->src[1]; | |
struct ggml_tensor * src2 = tensor->src[2]; | |
struct ggml_hash_set * hash_set = &cgraph->visited_hash_set; | |
const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1; | |
const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1; | |
const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1; | |
const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0]; | |
const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1]; | |
const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2]; | |
switch (tensor->op) { | |
case GGML_OP_DUP: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
} break; | |
case GGML_OP_ADD: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
if (src1_needs_grads) { | |
struct ggml_tensor * tmp = grad; | |
if (!ggml_are_same_shape(src0, src1)) { | |
tmp = ggml_repeat_back(ctx, tmp, src1); | |
} | |
ggml_add_or_set(ctx, cgraph, isrc1, tmp); | |
} | |
} break; | |
case GGML_OP_ADD1: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
if (src1_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); // TODO: should probably be sum instead of mean | |
} | |
} break; | |
case GGML_OP_ACC: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
if (src1_needs_grads) { | |
const size_t nb1 = ((int32_t *) tensor->op_params)[0]; | |
const size_t nb2 = ((int32_t *) tensor->op_params)[1]; | |
const size_t nb3 = ((int32_t *) tensor->op_params)[2]; | |
const size_t offset = ((int32_t *) tensor->op_params)[3]; | |
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx, | |
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], | |
nb1, nb2, nb3, offset); | |
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1)); | |
} | |
} break; | |
case GGML_OP_SUB: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
if (src1_needs_grads) { | |
ggml_sub_or_set(ctx, cgraph, isrc1, grad); | |
} | |
} break; | |
case GGML_OP_MUL: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1)); | |
} | |
if (src1_needs_grads) { | |
struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad); | |
if (!ggml_are_same_shape(src0, src1)) { | |
tmp = ggml_repeat_back(ctx, tmp, src1); | |
} | |
ggml_add_or_set(ctx, cgraph, isrc1, tmp); | |
} | |
} break; | |
case GGML_OP_DIV: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1)); | |
} | |
if (src1_needs_grads) { | |
ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1))); | |
} | |
} break; | |
case GGML_OP_SQR: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f)); | |
} | |
} break; | |
case GGML_OP_SQRT: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f)); | |
} | |
} break; | |
case GGML_OP_LOG: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_OP_SIN: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0))); | |
} | |
} break; | |
case GGML_OP_COS: { | |
if (src0_needs_grads) { | |
ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0))); | |
} | |
} break; | |
case GGML_OP_SUM: { | |
if (src0_needs_grads) { | |
ggml_add1_or_set(ctx, cgraph, isrc0, grad); | |
} | |
} break; | |
case GGML_OP_SUM_ROWS: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_OP_MEAN: { | |
if (src0_needs_grads) { | |
ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false)); | |
} | |
} break; | |
case GGML_OP_REPEAT: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_OP_REPEAT_BACK: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_OP_RMS_NORM: { | |
if (src0_needs_grads) { | |
float eps; | |
memcpy(&eps, tensor->op_params, sizeof(float)); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps)); | |
} | |
} break; | |
case GGML_OP_MUL_MAT: { | |
// https://cs231n.github.io/optimization-2/#staged | |
// # forward pass | |
// s0 = np.random.randn(5, 10) | |
// s1 = np.random.randn(10, 3) | |
// t = s0.dot(s1) | |
// # now suppose we had the gradient on t from above in the circuit | |
// dt = np.random.randn(*t.shape) # same shape as t | |
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix | |
// ds1 = t.T.dot(dt) | |
// tensor.shape [m,p,qq,rr] | |
// src0.shape [n,m,q1,r1] | |
// src1.shape [n,p,qq,rr] | |
if (src0_needs_grads) { | |
GGML_ASSERT(grad->ne[2] == src1->ne[2]); | |
GGML_ASSERT(grad->ne[3] == src1->ne[3]); | |
struct ggml_tensor * tmp = | |
ggml_out_prod(ctx, // [n,m,qq,rr] | |
src1, // [n,p,qq,rr] | |
grad); // [m,p,qq,rr] | |
if (!ggml_are_same_shape(tmp, src0)) { | |
GGML_ASSERT(tmp->ne[0] == src0->ne[0]); | |
GGML_ASSERT(tmp->ne[1] == src0->ne[1]); | |
GGML_ASSERT(tmp->ne[3] == 1); | |
const int64_t nr2 = tmp->ne[2] / src0->ne[2]; | |
const size_t nb2 = tmp->nb[2] * nr2; | |
const size_t nb3 = tmp->nb[2]; | |
tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0); | |
tmp = ggml_repeat_back(ctx, tmp, src0); | |
} | |
ggml_add_or_set(ctx, cgraph, isrc0, tmp); | |
} | |
if (src1_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc1, | |
// ggml_mul_mat(ctx, // [n,p,qq,rr] | |
// ggml_cont(ctx, // [m,n,q1,r1] | |
// ggml_transpose(ctx, src0)), // [m,n,q1,r1] | |
// grad), // [m,p,qq,rr] | |
// when src0 is bigger than tensor->grad (this is mostly the case in llama), | |
// avoid transpose of src0, rather transpose smaller tensor->grad | |
// and then use ggml_out_prod | |
ggml_out_prod(ctx, // [n,p,qq,rr] | |
src0, // [n,m,q1,r1] | |
ggml_transpose(ctx, // [p,m,qq,rr] | |
grad))); // [m,p,qq,rr] | |
} | |
} break; | |
case GGML_OP_SCALE: { | |
if (src0_needs_grads) { | |
float s; | |
memcpy(&s, tensor->op_params, sizeof(float)); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, false)); | |
} | |
} break; | |
case GGML_OP_SET: { | |
const size_t nb1 = ((const int32_t *) tensor->op_params)[0]; | |
const size_t nb2 = ((const int32_t *) tensor->op_params)[1]; | |
const size_t nb3 = ((const int32_t *) tensor->op_params)[2]; | |
const size_t offset = ((const int32_t *) tensor->op_params)[3]; | |
struct ggml_tensor * tensor_grad_view = NULL; | |
if (src0_needs_grads || src1_needs_grads) { | |
GGML_ASSERT(src0->type == tensor->type); | |
GGML_ASSERT(!cgraph->grads[isrc0] || cgraph->grads[isrc0]->type == grad->type); | |
GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type); | |
tensor_grad_view = ggml_view_4d(ctx, | |
grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], | |
nb1, nb2, nb3, offset); | |
} | |
if (src0_needs_grads) { | |
struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false)); | |
} | |
if (src1_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1)); | |
} | |
} break; | |
case GGML_OP_CPY: { | |
// cpy overwrites value of src1 by src0 and returns view(src1) | |
// the overwriting is mathematically equivalent to: | |
// tensor = src0 * 1 + src1 * 0 | |
if (src0_needs_grads) { | |
// dsrc0 = dtensor * 1 | |
ggml_add_or_set(ctx, cgraph, isrc0, grad); | |
} | |
if (src1_needs_grads) { | |
// dsrc1 = dtensor * 0 -> noop | |
} | |
} break; | |
case GGML_OP_CONT: { | |
// same as cpy | |
if (src0_needs_grads) { | |
GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0])); | |
GGML_ASSERT(ggml_is_contiguous(grad)); | |
GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0)); | |
ggml_add_or_set(ctx, cgraph, isrc0, | |
ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_OP_RESHAPE: { | |
if (src0_needs_grads) { | |
struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0)); | |
} | |
} break; | |
case GGML_OP_VIEW: { | |
if (src0_needs_grads) { | |
size_t offset; | |
memcpy(&offset, tensor->op_params, sizeof(offset)); | |
size_t nb1 = tensor->nb[1]; | |
size_t nb2 = tensor->nb[2]; | |
size_t nb3 = tensor->nb[3]; | |
if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) { | |
// gradient is typically F32, but src0 could be other type | |
size_t ng = ggml_element_size(cgraph->grads[isrc0]); | |
size_t n0 = ggml_element_size(src0); | |
GGML_ASSERT(offset % n0 == 0); | |
GGML_ASSERT(nb1 % n0 == 0); | |
GGML_ASSERT(nb2 % n0 == 0); | |
GGML_ASSERT(nb3 % n0 == 0); | |
offset = (offset / n0) * ng; | |
nb1 = (nb1 / n0) * ng; | |
nb2 = (nb2 / n0) * ng; | |
nb3 = (nb3 / n0) * ng; | |
} | |
ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset); | |
} | |
} break; | |
case GGML_OP_PERMUTE: { | |
if (src0_needs_grads) { | |
const int32_t * axes = (const int32_t *) tensor->op_params; | |
const int axis0 = axes[0] & 0x3; | |
const int axis1 = axes[1] & 0x3; | |
const int axis2 = axes[2] & 0x3; | |
const int axis3 = axes[3] & 0x3; | |
int axb[4] = {0,0,0,0}; // axes backward | |
axb[axis0] = 0; | |
axb[axis1] = 1; | |
axb[axis2] = 2; | |
axb[axis3] = 3; | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3])); | |
} | |
} break; | |
case GGML_OP_TRANSPOSE: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad)); | |
} | |
} break; | |
case GGML_OP_GET_ROWS: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0)); | |
} | |
if (src1_needs_grads) { | |
// noop | |
} | |
} break; | |
case GGML_OP_DIAG_MASK_INF: { | |
if (src0_needs_grads) { | |
/* ggml_diag_mask_inf_impl() shouldn't be here */ | |
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */ | |
const int n_past = ((const int32_t *) tensor->op_params)[0]; | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false)); | |
} | |
} break; | |
case GGML_OP_DIAG_MASK_ZERO: { | |
if (src0_needs_grads) { | |
const int n_past = ((const int32_t *) tensor->op_params)[0]; | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false)); | |
} | |
} break; | |
case GGML_OP_SOFT_MAX: { | |
if (src0_needs_grads) { | |
float scale = 1.0f; | |
float max_bias = 0.0f; | |
memcpy(&scale, (const float *) tensor->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float)); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias)); | |
} | |
GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented"); | |
} break; | |
case GGML_OP_ROPE: { | |
if (src0_needs_grads) { | |
//const int n_past = ((int32_t *) tensor->op_params)[0]; | |
const int n_dims = ((const int32_t *) tensor->op_params)[1]; | |
const int mode = ((const int32_t *) tensor->op_params)[2]; | |
//const int n_ctx = ((int32_t *) tensor->op_params)[3]; | |
const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4]; | |
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; | |
int sections[4] = {0, 0, 0, 0}; | |
memcpy(&freq_base, (const float *) tensor->op_params + 5, sizeof(float)); | |
memcpy(&freq_scale, (const float *) tensor->op_params + 6, sizeof(float)); | |
memcpy(&ext_factor, (const float *) tensor->op_params + 7, sizeof(float)); | |
memcpy(&attn_factor, (const float *) tensor->op_params + 8, sizeof(float)); | |
memcpy(&beta_fast, (const float *) tensor->op_params + 9, sizeof(float)); | |
memcpy(&beta_slow, (const float *) tensor->op_params + 10, sizeof(float)); | |
memcpy(§ions, tensor->op_params + 11, sizeof(sections)); | |
struct ggml_tensor * rope_back = grad->ne[2] == src1->ne[0] ? | |
ggml_rope_ext_back(ctx, grad, src1, src2, n_dims, | |
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow) : | |
ggml_rope_multi_back(ctx, grad, src1, src2, n_dims, sections, | |
mode, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); | |
ggml_add_or_set(ctx, cgraph, isrc0, rope_back); | |
} | |
GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented"); | |
} break; | |
case GGML_OP_IM2COL: { | |
if (src1_needs_grads) { | |
const int32_t s0 = ggml_get_op_params_i32(tensor, 0); | |
const int32_t s1 = ggml_get_op_params_i32(tensor, 1); | |
const int32_t p0 = ggml_get_op_params_i32(tensor, 2); | |
const int32_t p1 = ggml_get_op_params_i32(tensor, 3); | |
const int32_t d0 = ggml_get_op_params_i32(tensor, 4); | |
const int32_t d1 = ggml_get_op_params_i32(tensor, 5); | |
const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1; | |
ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D)); | |
} | |
} break; | |
case GGML_OP_POOL_2D: { | |
if (src0_needs_grads) { | |
const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0); | |
const int32_t k0 = ggml_get_op_params_i32(tensor, 1); | |
const int32_t k1 = ggml_get_op_params_i32(tensor, 2); | |
const int32_t s0 = ggml_get_op_params_i32(tensor, 3); | |
const int32_t s1 = ggml_get_op_params_i32(tensor, 4); | |
const int32_t p0 = ggml_get_op_params_i32(tensor, 5); | |
const int32_t p1 = ggml_get_op_params_i32(tensor, 6); | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1)); | |
} | |
} break; | |
case GGML_OP_WIN_PART: | |
case GGML_OP_WIN_UNPART: | |
case GGML_OP_UNARY: { | |
switch (ggml_get_unary_op(tensor)) { | |
case GGML_UNARY_OP_ABS: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad)); | |
} | |
} break; | |
case GGML_UNARY_OP_SGN: { | |
// noop | |
} break; | |
case GGML_UNARY_OP_NEG: { | |
if (src0_needs_grads) { | |
ggml_sub_or_set(ctx, cgraph, isrc0, grad); | |
} | |
} break; | |
case GGML_UNARY_OP_STEP: { | |
// noop | |
} break; | |
case GGML_UNARY_OP_RELU: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad)); | |
} | |
} break; | |
case GGML_UNARY_OP_SILU: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0)); | |
} | |
} break; | |
case GGML_UNARY_OP_EXP: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad)); | |
} | |
} break; | |
default: { | |
fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n", | |
__func__, ggml_unary_op_name(ggml_get_unary_op(tensor))); | |
GGML_ABORT("fatal error"); | |
} //break; | |
} | |
} break; | |
case GGML_OP_CROSS_ENTROPY_LOSS: { | |
if (src0_needs_grads) { | |
ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1)); | |
} | |
GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented"); | |
} break; | |
case GGML_OP_NONE: { | |
// noop | |
} break; | |
case GGML_OP_COUNT: | |
default: { | |
fprintf(stderr, "%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op)); | |
GGML_ABORT("fatal error"); | |
} //break; | |
} | |
GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0])); | |
GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1])); | |
GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2])); | |
} | |
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { | |
// check if already visited | |
if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) { | |
return; | |
} | |
for (int i = 0; i < GGML_MAX_SRC; ++i) { | |
const int k = | |
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i : | |
(cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) : | |
/* unknown order, just fall back to using i*/ i; | |
if (node->src[k]) { | |
ggml_visit_parents(cgraph, node->src[k]); | |
} | |
} | |
if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) { | |
// reached a leaf node, not part of the gradient graph (e.g. a constant) | |
GGML_ASSERT(cgraph->n_leafs < cgraph->size); | |
if (strlen(node->name) == 0) { | |
ggml_format_name(node, "leaf_%d", cgraph->n_leafs); | |
} | |
cgraph->leafs[cgraph->n_leafs] = node; | |
cgraph->n_leafs++; | |
} else { | |
GGML_ASSERT(cgraph->n_nodes < cgraph->size); | |
if (strlen(node->name) == 0) { | |
ggml_format_name(node, "node_%d", cgraph->n_nodes); | |
} | |
cgraph->nodes[cgraph->n_nodes] = node; | |
cgraph->n_nodes++; | |
} | |
} | |
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { | |
if (!expand) { | |
// TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand | |
ggml_graph_clear(cgraph); | |
} | |
const int n0 = cgraph->n_nodes; | |
ggml_visit_parents(cgraph, tensor); | |
const int n_new = cgraph->n_nodes - n0; | |
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); | |
if (n_new > 0) { | |
// the last added node should always be starting point | |
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor); | |
} | |
} | |
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { | |
ggml_build_forward_impl(cgraph, tensor, true); | |
} | |
void ggml_build_backward_expand( | |
struct ggml_context * ctx_static, | |
struct ggml_context * ctx_compute, | |
struct ggml_cgraph * cgraph, | |
bool accumulate) { | |
GGML_ASSERT(cgraph->n_nodes > 0); | |
GGML_ASSERT(cgraph->grads); | |
GGML_ASSERT(cgraph->grad_accs); | |
const int n_nodes_f = cgraph->n_nodes; | |
memset(cgraph->grads, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *)); | |
memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *)); | |
bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool)); | |
{ | |
bool any_params = false; | |
bool any_loss = false; | |
for (int i = 0; i < n_nodes_f; ++i) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM); | |
any_loss = any_loss || (node->flags & GGML_TENSOR_FLAG_LOSS); | |
} | |
GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?"); | |
GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?"); | |
} | |
for (int i = 0; i < n_nodes_f; ++i) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
if (node->type == GGML_TYPE_I32) { | |
continue; | |
} | |
bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS); | |
bool ignore_src[GGML_MAX_SRC] = {false}; | |
switch (node->op) { | |
// gradients in node->src[0] for one reason or another have no effect on output gradients | |
case GGML_OP_IM2COL: // only used for its shape | |
case GGML_OP_IM2COL_BACK: // same as IM2COL | |
ignore_src[0] = true; | |
break; | |
case GGML_OP_UNARY: { | |
const enum ggml_unary_op uop = ggml_get_unary_op(node); | |
// SGN and STEP unary ops are piecewise constant | |
if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) { | |
ignore_src[0] = true; | |
} | |
} break; | |
// gradients in node->src[1] for one reason or another have no effect on output gradients | |
case GGML_OP_CPY: // gradients in CPY target are irrelevant | |
case GGML_OP_GET_ROWS: // row indices not differentiable | |
case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS | |
case GGML_OP_ROPE: // positions not differentiable | |
ignore_src[1] = true; | |
break; | |
default: | |
break; | |
} | |
for (int j = 0; j < GGML_MAX_SRC; ++j) { | |
if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) { | |
continue; | |
} | |
GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16); | |
node_needs_grad = true; | |
break; | |
} | |
if (!node_needs_grad) { | |
continue; | |
} | |
// inplace operations are currently not supported | |
GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW || | |
node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE); | |
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); | |
GGML_ASSERT(igrad != GGML_HASHSET_FULL); | |
GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad)); | |
if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) { | |
cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node); | |
cgraph->grads[igrad] = cgraph->grad_accs[igrad]; | |
ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name); | |
} | |
grads_needed[igrad] = true; | |
} | |
for (int i = n_nodes_f - 1; i >= 0; --i) { | |
// inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation | |
// use allocator to automatically make inplace operations | |
ggml_compute_backward(ctx_compute, cgraph, i, grads_needed); | |
} | |
free(grads_needed); | |
} | |
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { | |
void * ptr = *p; | |
ptr = (void *) GGML_PAD((uintptr_t) ptr, align); | |
*p = (void *) ((char *) ptr + size); | |
return ptr; | |
} | |
static size_t ggml_graph_nbytes(size_t size, bool grads) { | |
size_t hash_size = ggml_hash_size(size * 2); | |
void * p = 0; | |
incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1); | |
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes | |
incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs | |
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys | |
if (grads) { | |
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads | |
incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grad_accs | |
} | |
incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t)); | |
size_t nbytes = (size_t) p; | |
return nbytes; | |
} | |
size_t ggml_graph_overhead_custom(size_t size, bool grads) { | |
return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN); | |
} | |
size_t ggml_graph_overhead(void) { | |
return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false); | |
} | |
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) { | |
const size_t obj_size = ggml_graph_nbytes(size, grads); | |
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size); | |
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); | |
// the size of the hash table is doubled since it needs to hold both nodes and leafs | |
size_t hash_size = ggml_hash_size(size * 2); | |
void * p = cgraph + 1; | |
struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); | |
struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); | |
struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); | |
struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL; | |
struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL; | |
ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t)); | |
// check that we allocated the correct amount of memory | |
assert(obj_size == (size_t)((char *)p - (char *)cgraph)); | |
*cgraph = (struct ggml_cgraph) { | |
/*.size =*/ size, | |
/*.n_nodes =*/ 0, | |
/*.n_leafs =*/ 0, | |
/*.nodes =*/ nodes_ptr, | |
/*.grads =*/ grads_ptr, | |
/*.grad_accs =*/ grad_accs_ptr, | |
/*.leafs =*/ leafs_ptr, | |
/*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr }, | |
/*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, | |
}; | |
ggml_hash_set_reset(&cgraph->visited_hash_set); | |
if (grads) { | |
memset(cgraph->grads, 0, hash_size*sizeof(struct ggml_tensor *)); | |
memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *)); | |
} | |
return cgraph; | |
} | |
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) { | |
return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false); | |
} | |
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) { | |
struct ggml_cgraph cgraph = { | |
/*.size =*/ 0, | |
/*.n_nodes =*/ i1 - i0, | |
/*.n_leafs =*/ 0, | |
/*.nodes =*/ cgraph0->nodes + i0, | |
/*.grads =*/ NULL, // gradients would need visited_hash_set | |
/*.grad_accs =*/ NULL, | |
/*.leafs =*/ NULL, | |
/*.visited_hash_set =*/ { 0, NULL, NULL }, | |
/*.order =*/ cgraph0->order, | |
}; | |
return cgraph; | |
} | |
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) { | |
GGML_ASSERT(dst->size >= src->n_leafs); | |
GGML_ASSERT(dst->size >= src->n_nodes); | |
GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size); | |
dst->n_leafs = src->n_leafs; | |
dst->n_nodes = src->n_nodes; | |
dst->order = src->order; | |
for (int i = 0; i < src->n_leafs; ++i) { | |
dst->leafs[i] = src->leafs[i]; | |
} | |
for (int i = 0; i < src->n_nodes; ++i) { | |
dst->nodes[i] = src->nodes[i]; | |
} | |
for (size_t i = 0; i < src->visited_hash_set.size; ++i) { | |
// copy all hashset keys (tensors) that are in use | |
if (ggml_bitset_get(src->visited_hash_set.used, i)) { | |
ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]); | |
} | |
} | |
if (dst->grads) { | |
memset(dst->grads, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *)); | |
memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *)); | |
} | |
if (src->grads) { | |
GGML_ASSERT(dst->grads != NULL); | |
GGML_ASSERT(dst->grad_accs != NULL); | |
for (int i = 0; i < src->n_nodes; ++i) { | |
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]); | |
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]); | |
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL); | |
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src)); | |
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL); | |
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst)); | |
dst->grads[igrad_dst] = src->grads[igrad_src]; | |
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src]; | |
} | |
} | |
} | |
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { | |
struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL); | |
ggml_graph_cpy(cgraph, result); | |
return result; | |
} | |
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { | |
if (ggml_is_empty(tensor)) { | |
return tensor; | |
} | |
if (tensor->buffer) { | |
ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor)); | |
} else { | |
GGML_ASSERT(tensor->data); | |
memset(tensor->data, 0, ggml_nbytes(tensor)); | |
} | |
return tensor; | |
} | |
void ggml_graph_reset(struct ggml_cgraph * cgraph) { | |
GGML_ASSERT(cgraph->grads != NULL); | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node); | |
if (node->op == GGML_OP_OPT_STEP_ADAMW) { | |
// clear momenta | |
ggml_set_zero(node->src[2]); | |
ggml_set_zero(node->src[3]); | |
} | |
// initial gradients of loss should be 1, 0 otherwise | |
if (grad_acc) { | |
if (node->flags & GGML_TENSOR_FLAG_LOSS) { | |
GGML_ASSERT(grad_acc->type == GGML_TYPE_F32); | |
GGML_ASSERT(ggml_is_scalar(grad_acc)); | |
const float onef = 1.0f; | |
if (grad_acc->buffer) { | |
ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float)); | |
} else { | |
GGML_ASSERT(grad_acc->data); | |
*((float *) grad_acc->data) = onef; | |
} | |
} else { | |
ggml_set_zero(grad_acc); | |
} | |
} | |
} | |
} | |
void ggml_graph_clear(struct ggml_cgraph * cgraph) { | |
cgraph->n_leafs = 0; | |
cgraph->n_nodes = 0; | |
ggml_hash_set_reset(&cgraph->visited_hash_set); | |
} | |
int ggml_graph_size(struct ggml_cgraph * cgraph) { | |
return cgraph->size; | |
} | |
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) { | |
if (i < 0) { | |
GGML_ASSERT(cgraph->n_nodes + i >= 0); | |
return cgraph->nodes[cgraph->n_nodes + i]; | |
} | |
GGML_ASSERT(i < cgraph->n_nodes); | |
return cgraph->nodes[i]; | |
} | |
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) { | |
return cgraph->nodes; | |
} | |
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) { | |
return cgraph->n_nodes; | |
} | |
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { | |
GGML_ASSERT(cgraph->size > cgraph->n_nodes); | |
cgraph->nodes[cgraph->n_nodes] = tensor; | |
cgraph->n_nodes++; | |
} | |
struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) { | |
for (int i = 0; i < cgraph->n_leafs; i++) { | |
struct ggml_tensor * leaf = cgraph->leafs[i]; | |
if (strcmp(leaf->name, name) == 0) { | |
return leaf; | |
} | |
} | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
if (strcmp(node->name, name) == 0) { | |
return node; | |
} | |
} | |
return NULL; | |
} | |
struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); | |
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grads ? cgraph->grads[igrad] : NULL; | |
} | |
struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node); | |
return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) && cgraph->grad_accs ? cgraph->grad_accs[igrad] : NULL; | |
} | |
void ggml_graph_print(const struct ggml_cgraph * cgraph) { | |
GGML_LOG_INFO("=== GRAPH ===\n"); | |
GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes); | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
struct ggml_tensor * node = cgraph->nodes[i]; | |
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n", | |
i, | |
node->ne[0], node->ne[1], node->ne[2], | |
ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : | |
ggml_graph_get_grad(cgraph, node) ? "g" : " "); | |
} | |
GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs); | |
for (int i = 0; i < cgraph->n_leafs; i++) { | |
struct ggml_tensor * node = cgraph->leafs[i]; | |
GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n", | |
i, | |
node->ne[0], node->ne[1], | |
ggml_op_name(node->op), | |
ggml_get_name(node)); | |
} | |
GGML_LOG_INFO("========================================\n"); | |
} | |
// check if node is part of the graph | |
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
if (cgraph == NULL) { | |
return true; | |
} | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
if (cgraph->nodes[i] == node) { | |
return true; | |
} | |
} | |
return false; | |
} | |
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { | |
for (int i = 0; i < cgraph->n_nodes; i++) { | |
struct ggml_tensor * parent = cgraph->nodes[i]; | |
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent); | |
if (grad == node) { | |
return parent; | |
} | |
} | |
return NULL; | |
} | |
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { | |
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node); | |
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent); | |
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n", | |
gparent0 ? (void *) gparent0 : (void *) parent, | |
gparent0 ? "g" : "x", | |
gparent ? (void *) gparent : (void *) node, | |
gparent ? "g" : "x", | |
gparent ? "empty" : "vee", | |
gparent ? "dashed" : "solid", | |
label); | |
} | |
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { | |
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n", | |
(void *) parent, "x", | |
(void *) node, "x", | |
label); | |
} | |
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { | |
char color[16]; | |
FILE * fp = ggml_fopen(filename, "w"); | |
GGML_ASSERT(fp); | |
fprintf(fp, "digraph G {\n"); | |
fprintf(fp, " newrank = true;\n"); | |
fprintf(fp, " rankdir = TB;\n"); | |
for (int i = 0; i < gb->n_nodes; i++) { | |
struct ggml_tensor * node = gb->nodes[i]; | |
struct ggml_tensor * grad = ggml_graph_get_grad(gb, node); | |
if (ggml_graph_get_parent(gb, node) != NULL) { | |
continue; | |
} | |
if (node->flags & GGML_TENSOR_FLAG_PARAM) { | |
snprintf(color, sizeof(color), "yellow"); | |
} else if (grad) { | |
if (ggml_graph_find(gf, node)) { | |
snprintf(color, sizeof(color), "green"); | |
} else { | |
snprintf(color, sizeof(color), "lightblue"); | |
} | |
} else { | |
snprintf(color, sizeof(color), "white"); | |
} | |
fprintf(fp, " \"%p\" [ " | |
"style = filled; fillcolor = %s; shape = record; " | |
"label=\"", | |
(void *) node, color); | |
if (strlen(node->name) > 0) { | |
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); | |
} else { | |
fprintf(fp, "(%s)|", ggml_type_name(node->type)); | |
} | |
if (ggml_is_matrix(node)) { | |
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op)); | |
} else { | |
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op)); | |
} | |
if (grad) { | |
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op)); | |
} else { | |
fprintf(fp, "\"; ]\n"); | |
} | |
} | |
for (int i = 0; i < gb->n_leafs; i++) { | |
struct ggml_tensor * node = gb->leafs[i]; | |
snprintf(color, sizeof(color), "pink"); | |
fprintf(fp, " \"%p\" [ " | |
"style = filled; fillcolor = %s; shape = record; " | |
"label=\"<x>", | |
(void *) node, color); | |
if (strlen(node->name) > 0) { | |
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); | |
} else { | |
fprintf(fp, "(%s)|", ggml_type_name(node->type)); | |
} | |
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); | |
if (ggml_nelements(node) < 5 && node->data != NULL) { | |
fprintf(fp, " | ("); | |
for (int j = 0; j < ggml_nelements(node); j++) { | |
// FIXME: use ggml-backend to obtain the tensor data | |
//if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { | |
// fprintf(fp, "%d", ggml_get_i32_1d(node, j)); | |
//} | |
//else if (node->type == GGML_TYPE_F32 || | |
// node->type == GGML_TYPE_F16 || | |
// node->type == GGML_TYPE_BF16) { | |
// fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j)); | |
//} | |
//else | |
{ | |
fprintf(fp, "#"); | |
} | |
if (j < ggml_nelements(node) - 1) { | |
fprintf(fp, ", "); | |
} | |
} | |
fprintf(fp, ")"); | |
} | |
fprintf(fp, "\"; ]\n"); | |
} | |
for (int i = 0; i < gb->n_nodes; i++) { | |
struct ggml_tensor * node = gb->nodes[i]; | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
if (node->src[j]) { | |
char label[16]; | |
snprintf(label, sizeof(label), "src %d", j); | |
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label); | |
} | |
} | |
} | |
for (int i = 0; i < gb->n_leafs; i++) { | |
struct ggml_tensor * node = gb->leafs[i]; | |
for (int j = 0; j < GGML_MAX_SRC; j++) { | |
if (node->src[j]) { | |
char label[16]; | |
snprintf(label, sizeof(label), "src %d", j); | |
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label); | |
} | |
} | |
} | |
fprintf(fp, "}\n"); | |
fclose(fp); | |
GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
void ggml_set_input(struct ggml_tensor * tensor) { | |
tensor->flags |= GGML_TENSOR_FLAG_INPUT; | |
} | |
void ggml_set_output(struct ggml_tensor * tensor) { | |
tensor->flags |= GGML_TENSOR_FLAG_OUTPUT; | |
} | |
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) { | |
GGML_UNUSED(ctx); // TODO: remove this parameter | |
tensor->flags |= GGML_TENSOR_FLAG_PARAM; | |
} | |
void ggml_set_loss(struct ggml_tensor * tensor) { | |
GGML_ASSERT(ggml_is_scalar(tensor)); | |
GGML_ASSERT(tensor->type == GGML_TYPE_F32); | |
tensor->flags |= GGML_TENSOR_FLAG_LOSS; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
void ggml_quantize_init(enum ggml_type type) { | |
ggml_critical_section_start(); | |
switch (type) { | |
case GGML_TYPE_IQ2_XXS: | |
case GGML_TYPE_IQ2_XS: | |
case GGML_TYPE_IQ2_S: | |
case GGML_TYPE_IQ1_S: | |
case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break; | |
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break; | |
case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break; | |
default: // nothing | |
break; | |
} | |
ggml_critical_section_end(); | |
} | |
void ggml_quantize_free(void) { | |
ggml_critical_section_start(); | |
iq2xs_free_impl(GGML_TYPE_IQ2_XXS); | |
iq2xs_free_impl(GGML_TYPE_IQ2_XS); | |
iq2xs_free_impl(GGML_TYPE_IQ1_S); | |
iq3xs_free_impl(256); | |
ggml_critical_section_end(); | |
} | |
bool ggml_quantize_requires_imatrix(enum ggml_type type) { | |
return | |
type == GGML_TYPE_IQ2_XXS || | |
type == GGML_TYPE_IQ2_XS || | |
type == GGML_TYPE_IQ1_S;// || | |
//type == GGML_TYPE_IQ1_M; | |
} | |
size_t ggml_quantize_chunk( | |
enum ggml_type type, | |
const float * src, | |
void * dst, | |
int64_t start, | |
int64_t nrows, | |
int64_t n_per_row, | |
const float * imatrix) { | |
const int64_t n = (int64_t) nrows * n_per_row; | |
if (ggml_quantize_requires_imatrix(type)) { | |
GGML_ASSERT(imatrix != NULL); | |
} | |
GGML_ASSERT(start % type_traits[type].blck_size == 0); | |
GGML_ASSERT(start % n_per_row == 0); | |
ggml_quantize_init(type); // this is noop if already initialized | |
const size_t start_row = start / n_per_row; | |
const size_t row_size = ggml_row_size(type, n_per_row); | |
size_t result = 0; | |
switch (type) { | |
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; | |
case GGML_TYPE_F16: | |
{ | |
size_t elemsize = sizeof(ggml_fp16_t); | |
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); | |
result = n * elemsize; | |
} break; | |
case GGML_TYPE_BF16: | |
{ | |
size_t elemsize = sizeof(ggml_bf16_t); | |
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n); | |
result = n * elemsize; | |
} break; | |
case GGML_TYPE_F32: | |
{ | |
size_t elemsize = sizeof(float); | |
result = n * elemsize; | |
memcpy((uint8_t *)dst + start * elemsize, src + start, result); | |
} break; | |
default: | |
assert(false); | |
} | |
GGML_ASSERT(result == nrows * row_size); | |
return result; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
void ggml_log_set(ggml_log_callback log_callback, void * user_data) { | |
g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default; | |
g_logger_state.log_callback_user_data = user_data; | |
} | |
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) { | |
p->n_threads = n_threads; | |
p->prio = 0; // default priority (usually means normal or inherited) | |
p->poll = 50; // hybrid-polling enabled | |
p->strict_cpu = false; // no strict placement (all threads share same cpumask) | |
p->paused = false; // threads are ready to go | |
memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited) | |
} | |
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) { | |
struct ggml_threadpool_params p; | |
ggml_threadpool_params_init(&p, n_threads); | |
return p; | |
} | |
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) { | |
if (p0->n_threads != p1->n_threads ) return false; | |
if (p0->prio != p1->prio ) return false; | |
if (p0->poll != p1->poll ) return false; | |
if (p0->strict_cpu != p1->strict_cpu ) return false; | |
return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0; | |
} | |