Spaces:
Build error
Build error
// | |
// MIT license | |
// Copyright (C) 2024 Intel Corporation | |
// SPDX-License-Identifier: MIT | |
// | |
// | |
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
// See https://llvm.org/LICENSE.txt for license information. | |
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
// | |
/* suppress warning spam */ | |
void* ggml_sycl_host_malloc(size_t size); | |
void ggml_sycl_host_free(void* ptr); | |
static int g_ggml_sycl_debug = 0; | |
do { \ | |
if (g_ggml_sycl_debug) \ | |
fprintf(stderr, __VA_ARGS__); \ | |
} while (0) | |
[&]() { \ | |
try { \ | |
expr; \ | |
return dpct::success; \ | |
} catch (std::exception const& e) { \ | |
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \ | |
<< ", line:" << __LINE__ << ", func:" << __func__ \ | |
<< std::endl; \ | |
return dpct::default_error; \ | |
} \ | |
}() | |
// define for XMX in Intel GPU | |
// TODO: currently, it's not used for XMX really. | |
// max batch size to use MMQ kernels when tensor cores are available | |
// dmmv = dequantize_mul_mat_vec | |
typedef sycl::queue *queue_ptr; | |
enum ggml_sycl_backend_gpu_mode { | |
SYCL_UNSET_GPU_MODE = -1, | |
SYCL_SINGLE_GPU_MODE = 0, | |
SYCL_MUL_GPU_MODE | |
}; | |
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size"); | |
static void crash() { | |
int* ptr = NULL; | |
*ptr = 0; | |
} | |
[[noreturn]] static void ggml_sycl_error( | |
const char* stmt, | |
const char* func, | |
const char* file, | |
const int line, | |
const char* msg) { | |
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg); | |
fprintf(stderr, " in function %s at %s:%d\n", func, file, line); | |
GGML_ABORT("SYCL error"); | |
} | |
do { \ | |
auto err_ = (err); \ | |
if (err_ != 0) \ | |
ggml_sycl_error( \ | |
__func__, \ | |
__FILE__, \ | |
__LINE__, \ | |
"Meet error in this line code!"); \ | |
} while (0) | |
typedef sycl::half dfloat; // dequantize float | |
typedef sycl::half2 dfloat2; | |
typedef float dfloat; // dequantize float | |
typedef sycl::float2 dfloat2; | |
static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; | |
static int g_all_sycl_device_count = -1; | |
static bool g_ggml_backend_sycl_buffer_type_initialized = false; | |
static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = | |
SYCL_UNSET_GPU_MODE; | |
static void* g_scratch_buffer = nullptr; | |
static size_t g_scratch_size = 0; // disabled by default | |
static size_t g_scratch_offset = 0; | |
[[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) { | |
stream_ct1 << "ERROR: ggml-sycl was compiled without support for the " | |
"current GPU architecture.\n"; | |
// __trap(); | |
std::exit(1); | |
(void)bad_arch; // suppress unused function warning | |
} | |
int get_current_device_id(); | |
inline dpct::err0 ggml_sycl_set_device(const int device) try { | |
int current_device_id; | |
SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id())); | |
// GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d, | |
// current_device_id=%d\n", device, current_device); | |
if (device == current_device_id) { | |
return 0; | |
} | |
return CHECK_TRY_ERROR(dpct::select_device(device)); | |
} catch (sycl::exception const& exc) { | |
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ | |
<< ", line:" << __LINE__ << std::endl; | |
crash(); | |
std::exit(1); | |
} | |
////////////////////// | |
struct ggml_sycl_device_info { | |
int device_count; | |
struct sycl_device_info { | |
int cc; // compute capability | |
// int nsm; // number of streaming multiprocessors | |
// size_t smpb; // max. shared memory per block | |
bool vmm; // virtual memory support | |
size_t total_vram; | |
}; | |
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {}; | |
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {}; | |
int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0}; | |
}; | |
const ggml_sycl_device_info & ggml_sycl_info(); | |
struct ggml_sycl_pool { | |
virtual ~ggml_sycl_pool() = default; | |
virtual void * alloc(size_t size, size_t * actual_size) = 0; | |
virtual void free(void * ptr, size_t size) = 0; | |
}; | |
template<typename T> | |
struct ggml_sycl_pool_alloc { | |
ggml_sycl_pool * pool = nullptr; | |
T * ptr = nullptr; | |
size_t actual_size = 0; | |
explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) { | |
} | |
ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) { | |
alloc(size); | |
} | |
~ggml_sycl_pool_alloc() { | |
if (ptr != nullptr) { | |
pool->free(ptr, actual_size); | |
} | |
} | |
// size is in number of elements | |
T * alloc(size_t size) { | |
GGML_ASSERT(pool != nullptr); | |
GGML_ASSERT(ptr == nullptr); | |
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size); | |
return ptr; | |
} | |
T * alloc(ggml_sycl_pool & pool, size_t size) { | |
this->pool = &pool; | |
return alloc(size); | |
} | |
T * get() { | |
return ptr; | |
} | |
ggml_sycl_pool_alloc() = default; | |
ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete; | |
ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete; | |
ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete; | |
ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete; | |
}; | |
// backend interface | |
struct ggml_tensor_extra_gpu { | |
void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split | |
// tensors | |
dpct::event_ptr events[GGML_SYCL_MAX_DEVICES] | |
[GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs | |
}; | |
struct ggml_backend_sycl_context { | |
int device; | |
std::string name; | |
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } }; | |
explicit ggml_backend_sycl_context(int device) : | |
device(device), | |
name(GGML_SYCL_NAME + std::to_string(device)) { | |
} | |
queue_ptr stream(int device, int stream) { | |
if (qptrs[device][stream] == nullptr) { | |
qptrs[device][stream] = &(dpct::get_device(device).default_queue()); | |
} | |
return qptrs[device][stream]; | |
} | |
queue_ptr stream() { | |
return stream(device, 0); | |
} | |
dnnl::engine make_engine(sycl::queue* q) { | |
// Get the device associated with the queue | |
sycl::device dev = q->get_device(); | |
// Get the context associated with the queue | |
sycl::context ctx = q->get_context(); | |
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx); | |
return eng; | |
} | |
std::unordered_map<sycl::queue*, dnnl::stream> stream_map; | |
std::unordered_map<sycl::queue*, dnnl::engine> engine_map; | |
dnnl::stream stream_dnnl(int device, int _stream) { | |
auto q = stream(device, _stream); | |
return stream_dnnl(q); | |
} | |
dnnl::engine engine_dnnl(sycl::queue* qptr) { | |
auto it = engine_map.find(qptr); | |
if (it == engine_map.end()) { | |
auto eng = make_engine(qptr); | |
engine_map[qptr] = eng; | |
return eng; | |
} | |
else | |
{ | |
return it->second; | |
} | |
} | |
dnnl::stream stream_dnnl(sycl::queue* qptr) { | |
auto it = stream_map.find(qptr); | |
if (it == stream_map.end()) { | |
auto eng = engine_dnnl(qptr); | |
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr); | |
stream_map[qptr] = stream; | |
return stream; | |
} | |
else | |
{ | |
return it->second; | |
} | |
} | |
dnnl::stream stream_dnnl() { | |
return stream_dnnl(device, 0); | |
} | |
// pool | |
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES]; | |
std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES]; | |
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device); | |
static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device); | |
ggml_sycl_pool & pool(int device) { | |
if (pools[device] == nullptr) { | |
pools[device] = new_pool_for_device(stream(device,0), device); | |
} | |
return *pools[device]; | |
} | |
ggml_sycl_pool & pool() { | |
return pool(device); | |
} | |
ggml_sycl_pool & host_pool(int device) { | |
if (host_pools[device] == nullptr) { | |
host_pools[device] = new_pool_for_host(stream(device, 0), device); | |
} | |
return *host_pools[device]; | |
} | |
ggml_sycl_pool & host_pool() { return host_pool(device); } | |
}; | |
// common device functions | |
static __dpct_inline__ float warp_reduce_sum(float x, | |
const sycl::nd_item<3>& item_ct1) { | |
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
/* | |
DPCT1096:98: The right-most dimension of the work-group used in the SYCL | |
kernel that calls this function may be less than "32". The function | |
"dpct::permute_sub_group_by_xor" may return an unexpected result on the | |
CPU device. Modify the size of the work-group to ensure that the value | |
of the right-most dimension is a multiple of "32". | |
*/ | |
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask); | |
} | |
return x; | |
} | |
static __dpct_inline__ sycl::float2 | |
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) { | |
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(), | |
mask); | |
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(), | |
mask); | |
} | |
return a; | |
} | |
static __dpct_inline__ float warp_reduce_max(float x, | |
const sycl::nd_item<3>& item_ct1) { | |
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { | |
/* | |
DPCT1096:97: The right-most dimension of the work-group used in the SYCL | |
kernel that calls this function may be less than "32". The function | |
"dpct::permute_sub_group_by_xor" may return an unexpected result on the | |
CPU device. Modify the size of the work-group to ensure that the value | |
of the right-most dimension is a multiple of "32". | |
*/ | |
x = sycl::fmax(x, dpct::permute_sub_group_by_xor( | |
item_ct1.get_sub_group(), x, mask)); | |
} | |
return x; | |
} | |
// Helper for vec loading aligned data | |
template <typename Tp, int n> | |
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) { | |
return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr); | |
} | |
// Helper for accessing pointers with no warnings | |
template <typename Tp, int dim> | |
static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) { | |
return acc.template get_multi_ptr<sycl::access::decorated::no>().get(); | |
} | |
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size); | |
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, | |
const ggml_tensor *src1, | |
ggml_tensor *dst, const float *src0_dd, | |
const float *src1_dd, float *dst_dd, | |
const queue_ptr &main_stream); | |
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t> | |
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst, | |
int ne0, int ne1, int ne2, int ne3, | |
int ne10, int ne11, int ne12, int ne13, | |
/*int s0, */ int s1, int s2, int s3, | |
/*int s10,*/ int s11, int s12, int s13, | |
const sycl::nd_item<3> &item_ct1) { | |
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) + | |
item_ct1.get_local_id(2); | |
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) + | |
item_ct1.get_local_id(1)); | |
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) + | |
item_ct1.get_local_id(0)) / | |
ne3; | |
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) + | |
item_ct1.get_local_id(0)) % | |
ne3; | |
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { | |
return; | |
} | |
const int i11 = i1 % ne11; | |
const int i12 = i2 % ne12; | |
const int i13 = i3 % ne13; | |
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1; | |
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; | |
const size_t i_dst = i_src0; | |
const src0_t * src0_row = src0 + i_src0; | |
const src1_t * src1_row = src1 + i_src1; | |
dst_t * dst_row = dst + i_dst; | |
for (int i0 = i0s; i0 < ne0; | |
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) { | |
const int i10 = i0 % ne10; | |
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); | |
} | |
} | |
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t> | |
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, | |
int ne0, int ne1, int ne2, int ne3, | |
int ne10, int ne11, int ne12, int ne13, | |
/*int s0, */ int s1, int s2, int s3, | |
/*int s10,*/ int s11, int s12, int s13, | |
const sycl::nd_item<3> &item_ct1) { | |
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) + | |
item_ct1.get_local_id(2); | |
const int i3 = i/(ne2*ne1*ne0); | |
const int i2 = (i/(ne1*ne0)) % ne2; | |
const int i1 = (i/ne0) % ne1; | |
const int i0 = i % ne0; | |
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { | |
return; | |
} | |
const int i11 = i1 % ne11; | |
const int i12 = i2 % ne12; | |
const int i13 = i3 % ne13; | |
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1; | |
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; | |
const size_t i_dst = i_src0; | |
const src0_t * src0_row = src0 + i_src0; | |
const src1_t * src1_row = src1 + i_src1; | |
dst_t * dst_row = dst + i_dst; | |
const int i10 = i0 % ne10; | |
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); | |
} | |
template<float (*bin_op)(const float, const float)> | |
struct bin_bcast_sycl { | |
template <typename src0_t, typename src1_t, typename dst_t> | |
void operator()(ggml_backend_sycl_context & ctx, | |
const struct ggml_tensor *src0, | |
const struct ggml_tensor *src1, struct ggml_tensor *dst, | |
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd, | |
queue_ptr stream) { | |
GGML_TENSOR_BINARY_OP_LOCALS | |
int nr0 = ne10/ne0; | |
int nr1 = ne11/ne1; | |
int nr2 = ne12/ne2; | |
int nr3 = ne13/ne3; | |
int nr[4] = { nr0, nr1, nr2, nr3 }; | |
// collapse dimensions until first broadcast dimension | |
int64_t cne0[] = {ne0, ne1, ne2, ne3}; | |
int64_t cne1[] = {ne10, ne11, ne12, ne13}; | |
size_t cnb0[] = {nb0, nb1, nb2, nb3}; | |
size_t cnb1[] = {nb10, nb11, nb12, nb13}; | |
auto collapse = [](int64_t cne[]) { | |
cne[0] *= cne[1]; | |
cne[1] = cne[2]; | |
cne[2] = cne[3]; | |
cne[3] = 1; | |
}; | |
auto collapse_nb = [](size_t cnb[], int64_t cne[]) { | |
cnb[1] *= cne[1]; | |
cnb[2] *= cne[2]; | |
cnb[3] *= cne[3]; | |
}; | |
for (int i = 0; i < 4; i++) { | |
if (nr[i] != 1) { | |
break; | |
} | |
if (i > 0) { | |
collapse_nb(cnb0, cne0); | |
collapse_nb(cnb1, cne1); | |
collapse(cne0); | |
collapse(cne1); | |
} | |
} | |
{ | |
int64_t ne0 = cne0[0]; | |
int64_t ne1 = cne0[1]; | |
int64_t ne2 = cne0[2]; | |
int64_t ne3 = cne0[3]; | |
int64_t ne10 = cne1[0]; | |
int64_t ne11 = cne1[1]; | |
int64_t ne12 = cne1[2]; | |
int64_t ne13 = cne1[3]; | |
size_t nb0 = cnb0[0]; | |
size_t nb1 = cnb0[1]; | |
size_t nb2 = cnb0[2]; | |
size_t nb3 = cnb0[3]; | |
size_t nb10 = cnb1[0]; | |
size_t nb11 = cnb1[1]; | |
size_t nb12 = cnb1[2]; | |
size_t nb13 = cnb1[3]; | |
size_t s0 = nb0 / sizeof(dst_t); | |
size_t s1 = nb1 / sizeof(dst_t); | |
size_t s2 = nb2 / sizeof(dst_t); | |
size_t s3 = nb3 / sizeof(dst_t); | |
size_t s10 = nb10 / sizeof(src1_t); | |
size_t s11 = nb11 / sizeof(src1_t); | |
size_t s12 = nb12 / sizeof(src1_t); | |
size_t s13 = nb13 / sizeof(src1_t); | |
GGML_ASSERT(s0 == 1); | |
GGML_ASSERT(s10 == 1); | |
const int block_size = 128; | |
int64_t hne0 = std::max(ne0/2LL, 1LL); | |
sycl::range<3> block_dims(1, 1, 1); | |
block_dims[2] = std::min<unsigned int>(hne0, block_size); | |
block_dims[1] = std::min<unsigned int>( | |
ne1, block_size / (unsigned int)block_dims[2]); | |
block_dims[0] = std::min( | |
std::min<unsigned int>( | |
ne2 * ne3, block_size / (unsigned int)block_dims[2] / | |
(unsigned int)block_dims[1]), | |
64U); | |
sycl::range<3> block_nums( | |
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0], | |
(ne1 + block_dims[1] - 1) / block_dims[1], | |
(hne0 + block_dims[2] - 1) / block_dims[2]); | |
if (block_nums[0] > 65535) { | |
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel | |
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; | |
{ | |
dpct::has_capability_or_fail(stream->get_device(), | |
{sycl::aspect::fp16}); | |
stream->parallel_for( | |
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) * | |
sycl::range<3>(1, 1, block_size), | |
sycl::range<3>(1, 1, block_size)), | |
[=](sycl::nd_item<3> item_ct1) { | |
k_bin_bcast_unravel<bin_op>( | |
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, | |
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12, | |
s13, item_ct1); | |
}); | |
} | |
} else { | |
/* | |
DPCT1049:16: The work-group size passed to the SYCL kernel may | |
exceed the limit. To get the device limit, query | |
info::device::max_work_group_size. Adjust the work-group size if | |
needed. | |
*/ | |
dpct::has_capability_or_fail(stream->get_device(), | |
{sycl::aspect::fp16}); | |
stream->parallel_for( | |
sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
[=](sycl::nd_item<3> item_ct1) { | |
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, | |
ne2, ne3, ne10, ne11, ne12, ne13, | |
s1, s2, s3, s11, s12, s13, | |
item_ct1); | |
}); | |
} | |
} | |
GGML_UNUSED(ctx); | |
} | |
}; | |
template <class op> | |
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, | |
const ggml_tensor *src1, ggml_tensor *dst, | |
const float *src0_dd, const float *src1_dd, | |
float *dst_dd, | |
const queue_ptr &main_stream) { | |
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { | |
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream); | |
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { | |
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, | |
(sycl::half *)dst_dd, main_stream); | |
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { | |
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd, | |
main_stream); | |
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) { | |
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd, | |
main_stream); | |
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) { | |
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd, | |
main_stream); | |
} else { | |
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, | |
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); | |
GGML_ABORT("fatal error"); | |
} | |
} | |
bool gpu_has_xmx(sycl::device &dev); | |
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, | |
const ggml_tensor *src1, ggml_tensor *dst, | |
const ggml_sycl_op_flatten_t op); | |