Spaces:
Build error
Build error
struct ggml_opt_dataset { | |
struct ggml_context * ctx = nullptr; | |
ggml_backend_buffer_t buf = nullptr; | |
struct ggml_tensor * data = nullptr; | |
struct ggml_tensor * labels = nullptr; | |
int64_t ndata = -1; | |
int64_t ndata_shard = -1; | |
size_t nbs_data = -1; | |
size_t nbs_labels = -1; | |
std::vector<int64_t> permutation; | |
}; | |
struct ggml_opt_context { | |
ggml_backend_sched_t backend_sched = nullptr; | |
ggml_cgraph * allocated_graph = nullptr; | |
ggml_cgraph * allocated_graph_copy = nullptr; | |
struct ggml_context * ctx_static = nullptr; | |
struct ggml_context * ctx_static_cpu = nullptr; | |
struct ggml_context * ctx_compute = nullptr; | |
struct ggml_context * ctx_copy = nullptr; | |
ggml_backend_buffer_t buf_static = nullptr; | |
ggml_backend_buffer_t buf_static_cpu = nullptr; | |
std::mt19937 rng; | |
struct ggml_tensor * inputs = nullptr; | |
struct ggml_tensor * outputs = nullptr; | |
struct ggml_tensor * labels = nullptr; | |
struct ggml_tensor * loss = nullptr; | |
struct ggml_tensor * pred = nullptr; | |
struct ggml_tensor * ncorrect = nullptr; | |
struct ggml_cgraph * gf = nullptr; | |
struct ggml_cgraph * gb_grad = nullptr; | |
struct ggml_cgraph * gb_opt = nullptr; | |
int64_t iter = 1; | |
int32_t opt_period = 1; | |
int32_t opt_i = 0; | |
bool loss_per_datapoint = false; | |
ggml_opt_get_optimizer_params get_opt_pars = nullptr; | |
void * get_opt_pars_ud = nullptr; | |
struct ggml_tensor * adamw_params = nullptr; | |
}; | |
struct ggml_opt_result { | |
int64_t ndata = 0; | |
std::vector<float> loss; | |
std::vector<int32_t> pred; | |
int64_t ncorrect = 0; | |
int64_t opt_period = -1; | |
bool loss_per_datapoint = false; | |
}; | |
// ====== Dataset ====== | |
ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) { | |
GGML_ASSERT(ne_datapoint > 0); | |
GGML_ASSERT(ne_label >= 0); | |
GGML_ASSERT(ndata > 0); | |
GGML_ASSERT(ndata_shard > 0); | |
ggml_opt_dataset_t result = new ggml_opt_dataset; | |
result->ndata = ndata; | |
result->ndata_shard = ndata_shard; | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ 2*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
result->ctx = ggml_init(params); | |
} | |
result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata); | |
result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata; | |
if (ne_label > 0) { | |
result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata); | |
result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata; | |
} else { | |
result->labels = nullptr; | |
result->nbs_labels = 0; | |
} | |
result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type()); | |
const int64_t nshards = ndata/ndata_shard; | |
result->permutation.resize(nshards); | |
for (int64_t i = 0; i < nshards; ++i) { | |
result->permutation[i] = i; | |
} | |
return result; | |
} | |
void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) { | |
ggml_backend_buffer_free(dataset->buf); | |
ggml_free(dataset->ctx); | |
delete dataset; | |
} | |
struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) { | |
return dataset->data; | |
} | |
struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) { | |
return dataset->labels; | |
} | |
void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) { | |
GGML_ASSERT(idata <= dataset->ndata); | |
if (idata < 0) { | |
std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng); | |
return; | |
} | |
GGML_ASSERT(idata % dataset->ndata_shard == 0); | |
const int64_t ishard_max = idata / dataset->ndata_shard; | |
std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng); | |
} | |
void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) { | |
GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch)); | |
GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch)); | |
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr)); | |
const size_t nb_data_batch = ggml_nbytes(data_batch); | |
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0); | |
const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data; | |
if (labels_batch) { | |
const size_t nb_labels_batch = ggml_nbytes(labels_batch); | |
GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels); | |
} | |
GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size())); | |
for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) { | |
const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch]; | |
const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data; | |
ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data); | |
if (!labels_batch) { | |
continue; | |
} | |
const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels; | |
ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels); | |
} | |
} | |
// ====== Model / Context ====== | |
struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) { | |
GGML_UNUSED(userdata); | |
ggml_opt_optimizer_params result; | |
result.adamw.alpha = 0.001f; | |
result.adamw.beta1 = 0.9f; | |
result.adamw.beta2 = 0.999f; | |
result.adamw.eps = 1e-8f; | |
result.adamw.wd = 0.0f; | |
return result; | |
} | |
struct ggml_opt_params ggml_opt_default_params( | |
ggml_backend_sched_t backend_sched, | |
struct ggml_context * ctx_compute, | |
struct ggml_tensor * inputs, | |
struct ggml_tensor * outputs, | |
enum ggml_opt_loss_type loss_type) { | |
return { | |
/*backend_sched =*/ backend_sched, | |
/*ctx_compute =*/ ctx_compute, | |
/*inputs =*/ inputs, | |
/*logits =*/ outputs, | |
/*loss_type =*/ loss_type, | |
/*build_type =*/ GGML_OPT_BUILD_TYPE_OPT, | |
/*opt_period =*/ 1, | |
/*get_opt_pars =*/ ggml_opt_get_default_optimizer_params, | |
/*get_opt_pars_ud =*/ nullptr, | |
}; | |
} | |
static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) { | |
if (!tensor) { | |
return nullptr; | |
} | |
if (tensor_map.find(tensor) != tensor_map.end()) { | |
return tensor_map[tensor]; | |
} | |
ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor); | |
tensor_map[tensor] = new_tensor; | |
new_tensor->op = tensor->op; | |
for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
new_tensor->nb[i] = tensor->nb[i]; | |
} | |
new_tensor->flags = tensor->flags; | |
memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params)); | |
strcpy(new_tensor->name, tensor->name); | |
new_tensor->data = tensor->data; | |
new_tensor->buffer = tensor->buffer; | |
new_tensor->extra = tensor->extra; | |
new_tensor->view_offs = tensor->view_offs; | |
new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src); | |
for (int i = 0; i < GGML_MAX_SRC; i++) { | |
new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]); | |
} | |
return new_tensor; | |
} | |
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * src) { | |
std::map<ggml_tensor *, ggml_tensor *> tensor_map; | |
ggml_cgraph * dst = ggml_new_graph_custom(ctx, src->size, /*grads =*/ true); | |
for (int i = 0; i < src->n_leafs; i++) { | |
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->leafs[i])); | |
} | |
GGML_ASSERT(dst->n_leafs == src->n_leafs); | |
for (int i = 0; i < src->n_nodes; i++) { | |
ggml_build_forward_expand(dst, map_tensor(tensor_map, ctx, src->nodes[i])); | |
} | |
GGML_ASSERT(dst->n_nodes == src->n_nodes); | |
for (int i = 0; i < src->n_nodes; ++i) { | |
const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]); | |
const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]); | |
GGML_ASSERT(igrad_src != GGML_HASHSET_FULL); | |
GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src)); | |
GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL); | |
GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst)); | |
dst->grads[igrad_dst] = src->grads[igrad_src]; | |
dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src]; | |
} | |
return dst; | |
} | |
static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) { | |
GGML_ASSERT(graph); | |
if (opt_ctx->allocated_graph == graph) { | |
return; | |
} | |
ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph | |
{ | |
ggml_init_params params = { | |
/*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE, | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
ggml_free(opt_ctx->ctx_copy); | |
opt_ctx->ctx_copy = ggml_init(params); | |
} | |
opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph); | |
ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); | |
opt_ctx->allocated_graph = graph; | |
} | |
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) { | |
ggml_opt_context_t result = new struct ggml_opt_context; | |
result->backend_sched = params.backend_sched; | |
result->ctx_compute = params.ctx_compute; | |
result->inputs = params.inputs; | |
result->outputs = params.outputs; | |
result->opt_period = params.opt_period; | |
result->get_opt_pars = params.get_opt_pars; | |
result->get_opt_pars_ud = params.get_opt_pars_ud; | |
GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically"); | |
GGML_ASSERT(result->opt_period >= 1); | |
const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD || | |
(params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1); | |
ggml_set_input(result->inputs); | |
ggml_set_output(result->outputs); | |
result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass. | |
ggml_build_forward_expand(result->gf, result->outputs); | |
int n_param = 0; | |
for (int i = 0; i < result->gf->n_nodes; ++i) { | |
if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { | |
n_param++; | |
} | |
} | |
{ | |
// The static context is used for: | |
// - gradients (1 tensor per param if using gradient accumulation) | |
// - optimizer momenta (2 tensors per param) | |
// - labels | |
// - loss + its gradient (up to 5 tensors) | |
// - pred | |
// - ncorrect (2 tensors). | |
const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0); | |
const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead(); | |
struct ggml_init_params params = { | |
/*.mem_size =*/ size_meta, | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
result->ctx_static = ggml_init(params); | |
} | |
{ | |
// The static cpu context is used for: | |
// - optimizer parameters (1 for the entire context) | |
const size_t size_meta = 1 * ggml_tensor_overhead(); | |
struct ggml_init_params params = { | |
/*.mem_size =*/ size_meta, | |
/*.mem_buffer =*/ nullptr, | |
/*.no_alloc =*/ true, | |
}; | |
result->ctx_static_cpu = ggml_init(params); | |
} | |
switch (params.loss_type) { | |
case GGML_OPT_LOSS_TYPE_MEAN: { | |
result->loss = ggml_sum(result->ctx_static, result->outputs); | |
ggml_set_name(result->loss, "loss_sum"); | |
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); | |
result->loss = ggml_scale(result->ctx_static, result->loss, scale); | |
ggml_set_name(result->loss, "loss_mean"); | |
result->loss_per_datapoint = true; | |
break; | |
} | |
case GGML_OPT_LOSS_TYPE_SUM: { | |
result->loss = ggml_sum(result->ctx_static, result->outputs); | |
ggml_set_name(result->loss, "loss_sum"); | |
result->loss_per_datapoint = false; | |
break; | |
} | |
case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: { | |
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); | |
ggml_set_input(result->labels); | |
ggml_set_name(result->labels, "labels"); | |
result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels); | |
ggml_set_name(result->loss, "loss_cross_entropy"); | |
if (result->opt_period > 1) { | |
result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period); | |
ggml_set_name(result->loss, "loss_cross_entropy_scaled"); | |
} | |
result->loss_per_datapoint = true; | |
break; | |
} | |
case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: { | |
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs); | |
ggml_set_input(result->labels); | |
ggml_set_name(result->labels, "labels"); | |
result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels); | |
ggml_set_name(result->loss, "loss_error"); | |
result->loss = ggml_sqr(result->ctx_static, result->loss); | |
ggml_set_name(result->loss, "loss_squared_error"); | |
result->loss = ggml_sum(result->ctx_static, result->loss); | |
ggml_set_name(result->loss, "loss_sum_squared_error"); | |
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs)); | |
result->loss = ggml_scale(result->ctx_static, result->loss, scale); | |
ggml_set_name(result->loss, "loss_mean_squared_error"); | |
result->loss_per_datapoint = true; | |
break; | |
} | |
} | |
ggml_set_output(result->loss); | |
ggml_set_loss(result->loss); | |
ggml_build_forward_expand(result->gf, result->loss); | |
result->pred = ggml_argmax(result->ctx_static, result->outputs); | |
ggml_set_name(result->pred, "pred"); | |
ggml_set_output(result->pred); | |
ggml_build_forward_expand(result->gf, result->pred); | |
if (result->labels) { | |
result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels)); | |
ggml_set_name(result->ncorrect, "ncorrect"); | |
ggml_set_output(result->ncorrect); | |
ggml_build_forward_expand(result->gf, result->ncorrect); | |
} else { | |
result->ncorrect = nullptr; | |
} | |
if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) { | |
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); | |
return result; | |
} | |
// gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients. | |
result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf); | |
ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate); | |
if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) { | |
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); | |
ggml_graph_reset(result->gb_grad); | |
return result; | |
} | |
GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT); | |
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step. | |
result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad); | |
result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7); | |
ggml_set_input(result->adamw_params); | |
ggml_set_name(result->adamw_params, "adamw_params"); | |
for (int i = result->gf->n_nodes-1; i >= 0; --i) { | |
struct ggml_tensor * node = result->gb_opt->nodes[i]; | |
struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node); | |
if (node->flags & GGML_TENSOR_FLAG_PARAM) { | |
struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node); | |
struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node); | |
struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params); | |
ggml_build_forward_expand(result->gb_opt, opt_step); | |
} | |
} | |
result->buf_static = ggml_backend_alloc_ctx_tensors( | |
result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0)); | |
result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type()); | |
ggml_graph_reset(result->gb_opt); | |
return result; | |
} | |
void ggml_opt_free(ggml_opt_context_t opt_ctx) { | |
if (opt_ctx == nullptr) { | |
return; | |
} | |
ggml_backend_buffer_free(opt_ctx->buf_static); | |
ggml_backend_buffer_free(opt_ctx->buf_static_cpu); | |
ggml_free(opt_ctx->ctx_static); | |
ggml_free(opt_ctx->ctx_static_cpu); | |
delete opt_ctx; | |
} | |
void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) { | |
if (optimizer) { | |
ggml_graph_reset(opt_ctx->gb_opt); | |
opt_ctx->iter = 1; | |
} else { | |
ggml_graph_reset(opt_ctx->gb_grad); | |
} | |
} | |
struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->inputs; | |
} | |
struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->outputs; | |
} | |
struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->labels; | |
} | |
struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->loss; | |
} | |
struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->pred; | |
} | |
struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) { | |
return opt_ctx->ncorrect; | |
} | |
struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) { | |
return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node); | |
} | |
// ====== Optimization Result ====== | |
ggml_opt_result_t ggml_opt_result_init() { | |
return new ggml_opt_result; | |
} | |
void ggml_opt_result_free(ggml_opt_result_t result) { | |
delete result; | |
} | |
void ggml_opt_result_reset(ggml_opt_result_t result) { | |
result->ndata = 0; | |
result->loss.clear(); | |
result->pred.clear(); | |
result->ncorrect = 0; | |
} | |
void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) { | |
*ndata = result->ndata; | |
} | |
void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) { | |
const int64_t nbatches = result->loss.size(); // Number of physical batches. | |
if (nbatches == 0) { | |
*loss = 0.0; | |
*unc = NAN; | |
return; | |
} | |
double sum = 0.0; | |
double sum_squared = 0.0; | |
for (const float & loss : result->loss) { | |
// If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch. | |
const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss; | |
sum += loss_scaled; | |
sum_squared += loss_scaled*loss_scaled; | |
} | |
const double mean = sum/nbatches; | |
*loss = result->loss_per_datapoint ? mean : sum; | |
if (!unc) { | |
return; | |
} | |
if (nbatches < 2) { | |
*unc = NAN; | |
return; | |
} | |
const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1) | |
*unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1)); | |
} | |
void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) { | |
for (size_t i = 0; i < result->pred.size(); ++i) { | |
pred[i] = result->pred[i]; | |
} | |
} | |
void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) { | |
*accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN; | |
if (!unc) { | |
return; | |
} | |
*unc = result->ncorrect >= 0 && result->ndata >= 2 ? | |
sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN; | |
} | |
// ====== Computation ====== | |
static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) { | |
if (graph != opt_ctx->gf) { | |
struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud); | |
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f); | |
GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f); | |
GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f); | |
GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f); | |
GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f); | |
GGML_ASSERT(opt_pars.adamw.eps >= 0.0f); | |
GGML_ASSERT(opt_pars.adamw.wd >= 0.0f); | |
GGML_ASSERT(opt_pars.adamw.wd <= 1.0f); | |
// beta1, beta2 after applying warmup | |
const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter)); | |
const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter)); | |
float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params); | |
adamw_par_data[0] = opt_pars.adamw.alpha; | |
adamw_par_data[1] = opt_pars.adamw.beta1; | |
adamw_par_data[2] = opt_pars.adamw.beta2; | |
adamw_par_data[3] = opt_pars.adamw.eps; | |
adamw_par_data[4] = opt_pars.adamw.wd; | |
adamw_par_data[5] = beta1h; | |
adamw_par_data[6] = beta2h; | |
} | |
ggml_opt_alloc_graph(opt_ctx, graph); | |
ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy); | |
opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt; | |
if (!result) { | |
return; | |
} | |
if (result->ndata == 0) { | |
result->loss_per_datapoint = opt_ctx->loss_per_datapoint; | |
result->opt_period = opt_ctx->opt_period; | |
} else { | |
GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint); | |
GGML_ASSERT(result->opt_period == opt_ctx->opt_period); | |
} | |
const int64_t ndata = opt_ctx->outputs->ne[1]; | |
GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported"); | |
result->ndata += ndata; | |
GGML_ASSERT(ggml_is_scalar(opt_ctx->loss)); | |
GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32); | |
float loss; | |
ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss)); | |
result->loss.push_back(loss); | |
GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32); | |
std::vector<int32_t> pred(ndata); | |
ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred)); | |
result->pred.insert(result->pred.end(), pred.begin(), pred.end()); | |
if (!opt_ctx->labels || result->ncorrect < 0) { | |
result->ncorrect = -1; | |
return; | |
} | |
GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect)); | |
GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64); | |
int64_t ncorrect; | |
ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect)); | |
result->ncorrect += ncorrect; | |
} | |
void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { | |
ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result); | |
} | |
void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) { | |
if (opt_ctx->opt_period == 1) { | |
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); | |
return; | |
} | |
const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period; | |
if (opt_i_next == 0) { | |
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result); | |
ggml_opt_reset(opt_ctx, /*optimizer =*/ false); | |
} else { | |
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result); | |
} | |
opt_ctx->opt_i = opt_i_next; | |
} | |
// ====== High-Level Functions ====== | |
void ggml_opt_epoch( | |
ggml_opt_context_t opt_ctx, | |
ggml_opt_dataset_t dataset, | |
ggml_opt_result_t result_train, | |
ggml_opt_result_t result_eval, | |
int64_t idata_split, | |
ggml_opt_epoch_callback callback_train, | |
ggml_opt_epoch_callback callback_eval) { | |
struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx); | |
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx); | |
struct ggml_tensor * data = ggml_opt_dataset_data(dataset); | |
GGML_ASSERT(data->ne[0] == inputs->ne[0]); | |
const int64_t ndata = data->ne[1]; | |
const int64_t ndata_batch = inputs->ne[1]; | |
GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0); | |
const int64_t nbatches = ndata/ndata_batch; | |
idata_split = idata_split < 0 ? ndata : idata_split; | |
GGML_ASSERT(idata_split % ndata_batch == 0); | |
const int64_t ibatch_split = idata_split / ndata_batch; | |
int64_t ibatch = 0; | |
int64_t t_loop_start = ggml_time_us(); | |
for (; ibatch < ibatch_split; ++ibatch) { | |
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); | |
ggml_opt_forward_backward(opt_ctx, result_train); | |
if (callback_train) { | |
callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start); | |
} | |
} | |
t_loop_start = ggml_time_us(); | |
for (; ibatch < nbatches; ++ibatch) { | |
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch); | |
ggml_opt_forward(opt_ctx, result_eval); | |
if (callback_eval) { | |
callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start); | |
} | |
} | |
} | |
void ggml_opt_epoch_callback_progress_bar( | |
bool train, | |
ggml_opt_context_t opt_ctx, | |
ggml_opt_dataset_t dataset, | |
ggml_opt_result_t result, | |
int64_t ibatch, | |
int64_t ibatch_max, | |
int64_t t_start_us) { | |
fprintf(stderr, "%s[", train ? "train: " : "val: "); | |
constexpr int64_t bar_length = 25; | |
for (int64_t j = 0; j < bar_length; ++j) { | |
const int64_t ibatch_j = ibatch_max * j/bar_length; | |
if (ibatch_j < ibatch) { | |
fprintf(stderr, "="); | |
} else if (ibatch_max * (j - 1)/bar_length < ibatch) { | |
fprintf(stderr, ">"); | |
} else { | |
fprintf(stderr, " "); | |
} | |
} | |
const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1]; | |
const int64_t idata = ibatch*batch_size; | |
const int64_t idata_max = ibatch_max*batch_size; | |
double loss; | |
double loss_unc; | |
ggml_opt_result_loss(result, &loss, &loss_unc); | |
double accuracy; | |
double accuracy_unc; | |
ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc); | |
const int64_t t_ibatch_us = ggml_time_us() - t_start_us; | |
int64_t t_ibatch_s = t_ibatch_us / 1000000; | |
const int64_t t_ibatch_h = t_ibatch_s / 3600; | |
t_ibatch_s -= t_ibatch_h * 3600; | |
const int64_t t_ibatch_m = t_ibatch_s / 60; | |
t_ibatch_s -= t_ibatch_m * 60; | |
const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch; | |
int64_t t_eta_s = t_eta_us / 1000000; | |
const int64_t t_eta_h = t_eta_s / 3600; | |
t_eta_s -= t_eta_h * 3600; | |
const int64_t t_eta_m = t_eta_s / 60; | |
t_eta_s -= t_eta_m * 60; | |
fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, " | |
"t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r", | |
idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc, | |
t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s); | |
if (ibatch == ibatch_max) { | |
fprintf(stderr, "\n"); | |
} | |
fflush(stderr); | |
GGML_UNUSED(dataset); | |
} | |
void ggml_opt_fit( | |
ggml_backend_sched_t backend_sched, | |
ggml_context * ctx_compute, | |
ggml_tensor * inputs, | |
ggml_tensor * outputs, | |
ggml_opt_dataset_t dataset, | |
enum ggml_opt_loss_type loss_type, | |
ggml_opt_get_optimizer_params get_opt_pars, | |
int64_t nepoch, | |
int64_t nbatch_logical, | |
float val_split, | |
bool silent) { | |
ggml_time_init(); | |
const int64_t t_start_us = ggml_time_us(); | |
const int64_t ndata = ggml_opt_dataset_data(dataset)->ne[1]; | |
const int64_t nbatch_physical = inputs->ne[1]; | |
GGML_ASSERT(ndata % nbatch_logical == 0); | |
GGML_ASSERT(nbatch_logical % nbatch_physical == 0); | |
const int64_t opt_period = nbatch_logical / nbatch_physical; | |
const int64_t nbatches_logical = ndata / nbatch_logical; | |
GGML_ASSERT(val_split >= 0.0f); | |
GGML_ASSERT(val_split < 1.0f); | |
const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical) | |
const int64_t idata_split = ibatch_split * nbatch_physical; | |
int64_t epoch = 1; | |
ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type); | |
params.opt_period = opt_period; | |
params.get_opt_pars = get_opt_pars; | |
params.get_opt_pars_ud = &epoch; | |
ggml_opt_context_t opt_ctx = ggml_opt_init(params); | |
// Shuffling the data is generally useful but there is only a point if not all data is used in a single batch. | |
if (nbatch_logical < ndata) { | |
ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation). | |
} | |
ggml_opt_result_t result_train = ggml_opt_result_init(); | |
ggml_opt_result_t result_val = ggml_opt_result_init(); | |
ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar; | |
for (; epoch <= nepoch; ++epoch) { | |
if (nbatch_logical < idata_split) { | |
ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split); | |
} | |
ggml_opt_result_reset(result_train); | |
ggml_opt_result_reset(result_val); | |
if (!silent) { | |
fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch); | |
} | |
ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback); | |
if (!silent) { | |
fprintf(stderr, "\n"); | |
} | |
} | |
if (!silent) { | |
int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000; | |
const int64_t t_total_h = t_total_s / 3600; | |
t_total_s -= t_total_h * 3600; | |
const int64_t t_total_m = t_total_s / 60; | |
t_total_s -= t_total_m * 60; | |
fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s); | |
} | |
ggml_opt_free(opt_ctx); | |
ggml_opt_result_free(result_train); | |
ggml_opt_result_free(result_val); | |
} | |