Spaces:
Build error
Build error
//------------------------------------------------------------------------------ | |
// This file is contains additional mulmat kernels | |
// (and potentially other kernels). | |
//------------------------------------------------------------------------------ | |
// Always use subgroup size of 32 on Intel. | |
// Always use subgroups size of 64 on Adreno. | |
// TODO: do not know how to choose subgroup size on other GPUs. | |
typedef char int8_t; | |
typedef uchar uint8_t; | |
typedef short int16_t; | |
typedef ushort uint16_t; | |
typedef int int32_t; | |
typedef uint uint32_t; | |
//------------------------------------------------------------------------------ | |
// block_q4_0 | |
//------------------------------------------------------------------------------ | |
struct block_q4_0 | |
{ | |
half d; | |
uint8_t qs[QK4_0 / 2]; | |
}; | |
//------------------------------------------------------------------------------ | |
// block_q6_K | |
//------------------------------------------------------------------------------ | |
// 6-bit quantization | |
// weight is represented as x = a * q | |
// 16 blocks of 16 elements each | |
// Effectively 6.5625 bits per weight | |
typedef struct { | |
uint8_t ql[QK_K/2]; // quants, lower 4 bits | |
uint8_t qh[QK_K/4]; // quants, upper 2 bits | |
int8_t scales[QK_K/16]; // scales, quantized with 8 bits | |
half d; // super-block scale | |
} block_q6_K; | |
//------------------------------------------------------------------------------ | |
// These are the variant for matmatmul, based on the matvecmul kernel with | |
// flattened block_q4_0. | |
//------------------------------------------------------------------------------ | |
// Common dot prod. | |
inline float mm_block_q_4_0_dot_y_flat( | |
global uchar * x, | |
global half * dh, | |
float sumy, | |
float16 yl, | |
int il | |
) { | |
float d = *dh; | |
global ushort * qs = ((global ushort *)x + il/2); | |
float acc = 0.f; | |
acc += yl.s0 * (qs[0] & 0x000F); | |
acc += yl.s1 * (qs[0] & 0x0F00); | |
acc += yl.s8 * (qs[0] & 0x00F0); | |
acc += yl.s9 * (qs[0] & 0xF000); | |
acc += yl.s2 * (qs[1] & 0x000F); | |
acc += yl.s3 * (qs[1] & 0x0F00); | |
acc += yl.sa * (qs[1] & 0x00F0); | |
acc += yl.sb * (qs[1] & 0xF000); | |
acc += yl.s4 * (qs[2] & 0x000F); | |
acc += yl.s5 * (qs[2] & 0x0F00); | |
acc += yl.sc * (qs[2] & 0x00F0); | |
acc += yl.sd * (qs[2] & 0xF000); | |
acc += yl.s6 * (qs[3] & 0x000F); | |
acc += yl.s7 * (qs[3] & 0x0F00); | |
acc += yl.se * (qs[3] & 0x00F0); | |
acc += yl.sf * (qs[3] & 0xF000); | |
return d * (sumy * -8.f + acc); | |
} | |
// | |
// This variant performs 1d blocking with 8x output. | |
// Eeach simdgroup outputs 8 values on `n0` dim (row in the output matrix). | |
// | |
inline void mul_mat_q_n_f32_1d_8x_flat( | |
global uchar * src0_q, | |
global half * src0_d, | |
global float * src1, | |
global float * dst, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
const int nb = ne00/QK4_0; | |
int r0 = get_group_id(0); | |
int r1 = get_group_id(1); | |
int im = get_group_id(2); | |
// (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of | |
// a SIMD group in the grid. Each SIMD group produces N_DST values in the | |
// result, hence uses nb blocks, i.e., the offset becomes first_row*nb. | |
// Currently with llama2 7B, im is always 0. | |
// TODO: how to handle im/gqa*(nb*ne0)? | |
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; | |
int i12 = im%ne12; | |
int i13 = im/ne12; | |
// The number of scales is the same as the number of blocks. | |
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows. | |
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; | |
global uchar * x = (global uchar *) src0_q + offset0_q; | |
global half * d = (global half *) src0_d + offset0_d; | |
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; | |
float16 yl; | |
float8 sumf = (float8)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); | |
int ix = get_sub_group_local_id()/2; | |
int il = 8*(get_sub_group_local_id()%2); | |
global float * yb = y + ix*QK4_0 + il; | |
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { | |
float sumy = 0.f; | |
sumy += yb[0]; | |
sumy += yb[1]; | |
sumy += yb[2]; | |
sumy += yb[3]; | |
sumy += yb[4]; | |
sumy += yb[5]; | |
sumy += yb[6]; | |
sumy += yb[7]; | |
sumy += yb[16]; | |
sumy += yb[17]; | |
sumy += yb[18]; | |
sumy += yb[19]; | |
sumy += yb[20]; | |
sumy += yb[21]; | |
sumy += yb[22]; | |
sumy += yb[23]; | |
yl.s0 = yb[0]; | |
yl.s1 = yb[1]/256.f; | |
yl.s2 = yb[2]; | |
yl.s3 = yb[3]/256.f; | |
yl.s4 = yb[4]; | |
yl.s5 = yb[5]/256.f; | |
yl.s6 = yb[6]; | |
yl.s7 = yb[7]/256.f; | |
yl.s8 = yb[16]/16.f; | |
yl.s9 = yb[17]/4096.f; | |
yl.sa = yb[18]/16.f; | |
yl.sb = yb[19]/4096.f; | |
yl.sc = yb[20]/16.f; | |
yl.sd = yb[21]/4096.f; | |
yl.se = yb[22]/16.f; | |
yl.sf = yb[23]/4096.f; | |
sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); | |
sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); | |
sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); | |
sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); | |
sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il); | |
sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il); | |
sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il); | |
sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il); | |
yb += QK4_0 * (N_SIMDWIDTH/2); | |
} | |
float8 tot = (float8)( | |
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), | |
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3), | |
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5), | |
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) | |
); | |
if (get_sub_group_local_id() == 0) { | |
if (first_row + 0 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; | |
} | |
if (first_row + 1 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; | |
} | |
if (first_row + 2 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; | |
} | |
if (first_row + 3 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; | |
} | |
if (first_row + 4 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; | |
} | |
if (first_row + 5 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; | |
} | |
if (first_row + 6 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; | |
} | |
if (first_row + 7 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; | |
} | |
} | |
} | |
REQD_SUBGROUP_SIZE_16 | |
REQD_SUBGROUP_SIZE_64 | |
kernel void kernel_mul_mat_q4_0_f32_1d_8x_flat( | |
global uchar * src0_q, | |
global half * src0_d, | |
global float * src1, | |
ulong offset1, | |
global float * dst, | |
ulong offsetd, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
src1 = (global float*)((global char*)src1 + offset1); | |
dst = (global float*)((global char*)dst + offsetd); | |
mul_mat_q_n_f32_1d_8x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); | |
} | |
// | |
// This variant performs 1d blocking with 16x output. | |
// Eeach simdgroup outputs 16 values on `n0` dim (row in the output matrix). | |
// | |
inline void mul_mat_q_n_f32_1d_16x_flat( | |
global uchar * src0_q, | |
global half * src0_d, | |
global float * src1, | |
global float * dst, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
const int nb = ne00/QK4_0; | |
int r0 = get_group_id(0); | |
int r1 = get_group_id(1); | |
int im = get_group_id(2); | |
// (r0 * N_SIMDGROUP + get_sub_group_id()) is the linear global id of | |
// a SIMD group in the grid. Each SIMD group produces N_DST values in the | |
// result, hence uses nb blocks, i.e., the offset becomes first_row*nb. | |
// Currently with llama2 7B, im is always 0. | |
// TODO: how to handle im/gqa*(nb*ne0)? | |
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; | |
int i12 = im%ne12; | |
int i13 = im/ne12; | |
// The number of scales is the same as the number of blocks. | |
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows. | |
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; | |
global uchar * x = (global uchar *) src0_q + offset0_q; | |
global half * d = (global half *) src0_d + offset0_d; | |
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; | |
float16 yl; | |
float16 sumf = (float16)(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, | |
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f); | |
int ix = get_sub_group_local_id()/2; | |
int il = 8*(get_sub_group_local_id()%2); | |
global float * yb = y + ix*QK4_0 + il; | |
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) { | |
float sumy = 0.f; | |
sumy += yb[0]; | |
sumy += yb[1]; | |
sumy += yb[2]; | |
sumy += yb[3]; | |
sumy += yb[4]; | |
sumy += yb[5]; | |
sumy += yb[6]; | |
sumy += yb[7]; | |
sumy += yb[16]; | |
sumy += yb[17]; | |
sumy += yb[18]; | |
sumy += yb[19]; | |
sumy += yb[20]; | |
sumy += yb[21]; | |
sumy += yb[22]; | |
sumy += yb[23]; | |
yl.s0 = yb[0]; | |
yl.s1 = yb[1]/256.f; | |
yl.s2 = yb[2]; | |
yl.s3 = yb[3]/256.f; | |
yl.s4 = yb[4]; | |
yl.s5 = yb[5]/256.f; | |
yl.s6 = yb[6]; | |
yl.s7 = yb[7]/256.f; | |
yl.s8 = yb[16]/16.f; | |
yl.s9 = yb[17]/4096.f; | |
yl.sa = yb[18]/16.f; | |
yl.sb = yb[19]/4096.f; | |
yl.sc = yb[20]/16.f; | |
yl.sd = yb[21]/4096.f; | |
yl.se = yb[22]/16.f; | |
yl.sf = yb[23]/4096.f; | |
sumf.s0 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 0*nb*QK4_0/2, d + ib + 0*nb, sumy, yl, il); | |
sumf.s1 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 1*nb*QK4_0/2, d + ib + 1*nb, sumy, yl, il); | |
sumf.s2 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 2*nb*QK4_0/2, d + ib + 2*nb, sumy, yl, il); | |
sumf.s3 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 3*nb*QK4_0/2, d + ib + 3*nb, sumy, yl, il); | |
sumf.s4 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 4*nb*QK4_0/2, d + ib + 4*nb, sumy, yl, il); | |
sumf.s5 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 5*nb*QK4_0/2, d + ib + 5*nb, sumy, yl, il); | |
sumf.s6 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 6*nb*QK4_0/2, d + ib + 6*nb, sumy, yl, il); | |
sumf.s7 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 7*nb*QK4_0/2, d + ib + 7*nb, sumy, yl, il); | |
sumf.s8 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 8*nb*QK4_0/2, d + ib + 8*nb, sumy, yl, il); | |
sumf.s9 += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 9*nb*QK4_0/2, d + ib + 9*nb, sumy, yl, il); | |
sumf.sa += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 10*nb*QK4_0/2, d + ib + 10*nb, sumy, yl, il); | |
sumf.sb += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 11*nb*QK4_0/2, d + ib + 11*nb, sumy, yl, il); | |
sumf.sc += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 12*nb*QK4_0/2, d + ib + 12*nb, sumy, yl, il); | |
sumf.sd += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 13*nb*QK4_0/2, d + ib + 13*nb, sumy, yl, il); | |
sumf.se += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 14*nb*QK4_0/2, d + ib + 14*nb, sumy, yl, il); | |
sumf.sf += mm_block_q_4_0_dot_y_flat(x + ib*QK4_0/2 + 15*nb*QK4_0/2, d + ib + 15*nb, sumy, yl, il); | |
yb += QK4_0 * (N_SIMDWIDTH/2); | |
} | |
float16 tot = (float16)( | |
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1), | |
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3), | |
sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5), | |
sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7), | |
sub_group_reduce_add(sumf.s8), sub_group_reduce_add(sumf.s9), | |
sub_group_reduce_add(sumf.sa), sub_group_reduce_add(sumf.sb), | |
sub_group_reduce_add(sumf.sc), sub_group_reduce_add(sumf.sd), | |
sub_group_reduce_add(sumf.se), sub_group_reduce_add(sumf.sf) | |
); | |
if (get_sub_group_local_id() == 0) { | |
if (first_row + 0 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; | |
} | |
if (first_row + 1 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; | |
} | |
if (first_row + 2 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; | |
} | |
if (first_row + 3 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; | |
} | |
if (first_row + 4 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; | |
} | |
if (first_row + 5 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; | |
} | |
if (first_row + 6 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; | |
} | |
if (first_row + 7 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; | |
} | |
if (first_row + 8 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 8] = tot.s8; | |
} | |
if (first_row + 9 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 9] = tot.s9; | |
} | |
if (first_row + 10 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 10] = tot.sa; | |
} | |
if (first_row + 11 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 11] = tot.sb; | |
} | |
if (first_row + 12 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 12] = tot.sc; | |
} | |
if (first_row + 13 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 13] = tot.sd; | |
} | |
if (first_row + 14 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 14] = tot.se; | |
} | |
if (first_row + 15 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 15] = tot.sf; | |
} | |
} | |
} | |
REQD_SUBGROUP_SIZE_16 | |
REQD_SUBGROUP_SIZE_64 | |
kernel void kernel_mul_mat_q4_0_f32_1d_16x_flat( | |
global uchar * src0_q, | |
global half * src0_d, | |
global float * src1, | |
ulong offset1, | |
global float * dst, | |
ulong offsetd, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
src1 = (global float*)((global char*)src1 + offset1); | |
dst = (global float*)((global char*)dst + offsetd); | |
mul_mat_q_n_f32_1d_16x_flat(src0_q, src0_d, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3); | |
} | |
//------------------------------------------------------------------------------ | |
// kernel_mul_mat_q4_0_f32_flat_v0 | |
//------------------------------------------------------------------------------ | |
inline float block_q_4_0_dot_y_flat_v2( | |
half x, | |
half d, | |
float sumy, | |
float4 yl | |
) { | |
uchar2 q = as_uchar2(x); | |
float acc = 0.0f; | |
acc += (q.s0 & 0x0F) * yl.s0; | |
acc += (q.s1 & 0x0F) * yl.s1; | |
acc += (q.s0 & 0xF0) * yl.s2; | |
acc += (q.s1 & 0xF0) * yl.s3; | |
return d * (sumy * -8.f + acc);; | |
} | |
inline float block_q_4_0_dot_y_flat_v4( | |
float x, | |
half d, | |
float sumy, | |
float8 yl | |
) { | |
uchar4 q = as_uchar4(x); | |
float acc = 0.0f; | |
acc += (q.s0 & 0x0F) * yl.s0; | |
acc += (q.s1 & 0x0F) * yl.s1; | |
acc += (q.s2 & 0x0F) * yl.s2; | |
acc += (q.s3 & 0x0F) * yl.s3; | |
acc += (q.s0 & 0xF0) * yl.s4; | |
acc += (q.s1 & 0xF0) * yl.s5; | |
acc += (q.s2 & 0xF0) * yl.s6; | |
acc += (q.s3 & 0xF0) * yl.s7; | |
return d * (sumy * -8.f + acc);; | |
} | |
inline float block_q_4_0_dot_y_flat_v8( | |
float2 x, | |
half d, | |
float sumy, | |
float16 yl | |
) { | |
uchar8 q = as_uchar8(x); | |
float acc = 0.0f; | |
acc += (q.s0 & 0x0F) * yl.s0; | |
acc += (q.s1 & 0x0F) * yl.s1; | |
acc += (q.s2 & 0x0F) * yl.s2; | |
acc += (q.s3 & 0x0F) * yl.s3; | |
acc += (q.s4 & 0x0F) * yl.s4; | |
acc += (q.s5 & 0x0F) * yl.s5; | |
acc += (q.s6 & 0x0F) * yl.s6; | |
acc += (q.s7 & 0x0F) * yl.s7; | |
acc += (q.s0 & 0xF0) * yl.s8; | |
acc += (q.s1 & 0xF0) * yl.s9; | |
acc += (q.s2 & 0xF0) * yl.sa; | |
acc += (q.s3 & 0xF0) * yl.sb; | |
acc += (q.s4 & 0xF0) * yl.sc; | |
acc += (q.s5 & 0xF0) * yl.sd; | |
acc += (q.s6 & 0xF0) * yl.se; | |
acc += (q.s7 & 0xF0) * yl.sf; | |
return d * (sumy * -8.f + acc);; | |
} | |
REQD_SUBGROUP_SIZE_16 | |
REQD_SUBGROUP_SIZE_64 | |
kernel void kernel_mul_mat_q4_0_f32_flat_v0( | |
global uchar * src0_q, | |
global half * src0_d, | |
global float * src1, | |
ulong offset1, | |
global float * dst, | |
ulong offsetd, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
src1 = (global float*)((global char*)src1 + offset1); | |
dst = (global float*)((global char*)dst + offsetd); | |
const int nb = ne00/QK4_0; | |
int r0 = get_group_id(0); | |
int r1 = get_group_id(1); | |
int im = get_group_id(2); | |
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; | |
int i12 = im%ne12; | |
int i13 = im/ne12; | |
// The number of scales is the same as the number of blocks. | |
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows. | |
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_0/2; | |
global uchar * x = (global uchar *) src0_q + offset0_q; | |
global half * d = (global half *) src0_d + offset0_d; | |
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; | |
int ix = get_sub_group_local_id()/THREADS_PER_BLK; | |
int il = get_sub_group_local_id()%THREADS_PER_BLK; | |
global float * yb = y + ix*QK4_0 + BTYES_PER_THREAD_IN_BLK*il; | |
// Registers for caching activation | |
ACT_TY yl = 0.f; | |
// Registers for caching quants | |
Q_BLK_LD_TY q_blk_0 = 0, q_blk_1 = 0; | |
Q_BLK_LD_TY q_blk_2 = 0, q_blk_3 = 0; | |
Q_BLK_LD_TY q_blk_4 = 0, q_blk_5 = 0, q_blk_6 = 0, q_blk_7 = 0; | |
// Partial sum | |
SUM_TY sumf = 0.f; | |
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/THREADS_PER_BLK) { | |
float sumy = 0.f; | |
q_blk_0 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 0*nb*QK4_0/2); | |
q_blk_1 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 1*nb*QK4_0/2); | |
q_blk_2 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 2*nb*QK4_0/2); | |
q_blk_3 = *(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 3*nb*QK4_0/2); | |
q_blk_4 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 4*nb*QK4_0/2)); | |
q_blk_5 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 5*nb*QK4_0/2)); | |
q_blk_6 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 6*nb*QK4_0/2)); | |
q_blk_7 = (*(global Q_BLK_LD_TY*)(x + ib*QK4_0/2 + BTYES_PER_THREAD_IN_BLK*il + 7*nb*QK4_0/2)); | |
// Load activation | |
yl.s01234567 = *(global float8 *)(yb); | |
yl.s89abcdef = *(global float8 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; | |
sumy += yl.s3; | |
sumy += yl.s4; | |
sumy += yl.s5; | |
sumy += yl.s6; | |
sumy += yl.s7; | |
sumy += yl.s8; yl.s8 /= 16.f; | |
sumy += yl.s9; yl.s9 /= 16.f; | |
sumy += yl.sa; yl.sa /= 16.f; | |
sumy += yl.sb; yl.sb /= 16.f; | |
sumy += yl.sc; yl.sc /= 16.f; | |
sumy += yl.sd; yl.sd /= 16.f; | |
sumy += yl.se; yl.se /= 16.f; | |
sumy += yl.sf; yl.sf /= 16.f; | |
yl.s0123 = *(global float4 *)(yb); | |
yl.s4567 = *(global float4 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; | |
sumy += yl.s3; | |
sumy += yl.s4; yl.s4 /= 16.f; | |
sumy += yl.s5; yl.s5 /= 16.f; | |
sumy += yl.s6; yl.s6 /= 16.f; | |
sumy += yl.s7; yl.s7 /= 16.f; | |
yl.s01 = *(global float2 *)(yb); | |
yl.s23 = *(global float2 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; yl.s2 /= 16.f; | |
sumy += yl.s3; yl.s3 /= 16.f; | |
sumf.s0 += block_q_4_0_dot_y_flat(q_blk_0, *(d + ib + 0*nb), sumy, yl); | |
sumf.s1 += block_q_4_0_dot_y_flat(q_blk_1, *(d + ib + 1*nb), sumy, yl); | |
sumf.s2 += block_q_4_0_dot_y_flat(q_blk_2, *(d + ib + 2*nb), sumy, yl); | |
sumf.s3 += block_q_4_0_dot_y_flat(q_blk_3, *(d + ib + 3*nb), sumy, yl); | |
sumf.s4 += block_q_4_0_dot_y_flat(q_blk_4, *(d + ib + 4*nb), sumy, yl); | |
sumf.s5 += block_q_4_0_dot_y_flat(q_blk_5, *(d + ib + 5*nb), sumy, yl); | |
sumf.s6 += block_q_4_0_dot_y_flat(q_blk_6, *(d + ib + 6*nb), sumy, yl); | |
sumf.s7 += block_q_4_0_dot_y_flat(q_blk_7, *(d + ib + 7*nb), sumy, yl); | |
yb += QK4_0 * (N_SIMDWIDTH/THREADS_PER_BLK); | |
} | |
SUM_TY tot = (SUM_TY)( | |
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1) | |
, sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) | |
, sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5) | |
, sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) | |
); | |
if (get_sub_group_local_id() == 0) { | |
if (first_row + 0 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; | |
} | |
if (first_row + 1 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; | |
} | |
if (first_row + 2 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; | |
} | |
if (first_row + 3 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; | |
} | |
if (first_row + 4 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; | |
} | |
if (first_row + 5 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; | |
} | |
if (first_row + 6 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; | |
} | |
if (first_row + 7 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; | |
} | |
} | |
} | |
//------------------------------------------------------------------------------ | |
// Using image1d_buffer_t | |
float qcom_sub_group_reduce_add(float sum) { | |
sum += qcom_sub_group_shuffle_down(sum, 32, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
sum += qcom_sub_group_shuffle_down(sum, 16, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
sum += qcom_sub_group_shuffle_down(sum, 8, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
sum += qcom_sub_group_shuffle_down(sum, 4, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
sum += qcom_sub_group_shuffle_down(sum, 2, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
sum += qcom_sub_group_shuffle_down(sum, 1, CLK_SUB_GROUP_SHUFFLE_WIDTH_WAVE_SIZE_QCOM, 0.f); | |
return sum; | |
} | |
REQD_SUBGROUP_SIZE_16 | |
REQD_SUBGROUP_SIZE_64 | |
kernel void kernel_mul_mat_q4_0_f32_flat_img_v0( | |
read_only image1d_buffer_t src0_q, | |
read_only image1d_buffer_t src0_d, | |
global float * src1, | |
ulong offset1, | |
global float * dst, | |
ulong offsetd, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
src1 = (global float*)((global char*)src1 + offset1); | |
dst = (global float*)((global char*)dst + offsetd); | |
const int nb = ne00/QK4_0; | |
int r0 = get_group_id(0); | |
int r1 = get_group_id(1); | |
int im = get_group_id(2); | |
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST; | |
int i12 = im%ne12; | |
int i13 = im/ne12; | |
// The number of scales is the same as the number of blocks. | |
ulong offset0_d = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
// Each block contains QK4_0/2 uchars, hence offset for qs is as follows. | |
ulong offset0_q = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1; | |
int ix = get_sub_group_local_id()/THREADS_PER_BLK; | |
int il = get_sub_group_local_id()%THREADS_PER_BLK; | |
global float * yb = y + ix*QK4_0 + BTYES_PER_THREAD_IN_BLK*il; | |
// Registers for caching activation | |
ACT_TY yl = 0.f; | |
// Registers for caching quants | |
Q_BLK_LD_TY q_blk_0 = 0, q_blk_1 = 0; | |
Q_BLK_LD_TY q_blk_2 = 0, q_blk_3 = 0; | |
Q_BLK_LD_TY q_blk_4 = 0, q_blk_5 = 0, q_blk_6 = 0, q_blk_7 = 0; | |
// Partial sum | |
SUM_TY sumf = 0.f; | |
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/THREADS_PER_BLK) { | |
float sumy = 0.f;; | |
float4 tmp; | |
tmp = read_imagef(src0_q, offset0_q + ib + 0*nb); | |
q_blk_0 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 1*nb); | |
q_blk_1 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 2*nb); | |
q_blk_2 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 3*nb); | |
q_blk_3 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 4*nb); | |
q_blk_4 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 5*nb); | |
q_blk_5 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 6*nb); | |
q_blk_6 = EXTRACT_BLK_DATA(tmp, il); | |
tmp = read_imagef(src0_q, offset0_q + ib + 7*nb); | |
q_blk_7 = EXTRACT_BLK_DATA(tmp, il); | |
// Load activation | |
yl.s01234567 = *(global float8 *)(yb); | |
yl.s89abcdef = *(global float8 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; | |
sumy += yl.s3; | |
sumy += yl.s4; | |
sumy += yl.s5; | |
sumy += yl.s6; | |
sumy += yl.s7; | |
sumy += yl.s8; yl.s8 /= 16.f; | |
sumy += yl.s9; yl.s9 /= 16.f; | |
sumy += yl.sa; yl.sa /= 16.f; | |
sumy += yl.sb; yl.sb /= 16.f; | |
sumy += yl.sc; yl.sc /= 16.f; | |
sumy += yl.sd; yl.sd /= 16.f; | |
sumy += yl.se; yl.se /= 16.f; | |
sumy += yl.sf; yl.sf /= 16.f; | |
yl.s0123 = *(global float4 *)(yb); | |
yl.s4567 = *(global float4 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; | |
sumy += yl.s3; | |
sumy += yl.s4; yl.s4 /= 16.f; | |
sumy += yl.s5; yl.s5 /= 16.f; | |
sumy += yl.s6; yl.s6 /= 16.f; | |
sumy += yl.s7; yl.s7 /= 16.f; | |
yl.s01 = *(global float2 *)(yb); | |
yl.s23 = *(global float2 *)(yb + 16); | |
sumy += yl.s0; | |
sumy += yl.s1; | |
sumy += yl.s2; yl.s2 /= 16.f; | |
sumy += yl.s3; yl.s3 /= 16.f; | |
sumf.s0 += block_q_4_0_dot_y_flat(q_blk_0, read_imageh(src0_d, offset0_d + ib + 0*nb).s0, sumy, yl); | |
sumf.s1 += block_q_4_0_dot_y_flat(q_blk_1, read_imageh(src0_d, offset0_d + ib + 1*nb).s0, sumy, yl); | |
sumf.s2 += block_q_4_0_dot_y_flat(q_blk_2, read_imageh(src0_d, offset0_d + ib + 2*nb).s0, sumy, yl); | |
sumf.s3 += block_q_4_0_dot_y_flat(q_blk_3, read_imageh(src0_d, offset0_d + ib + 3*nb).s0, sumy, yl); | |
sumf.s4 += block_q_4_0_dot_y_flat(q_blk_4, read_imageh(src0_d, offset0_d + ib + 4*nb).s0, sumy, yl); | |
sumf.s5 += block_q_4_0_dot_y_flat(q_blk_5, read_imageh(src0_d, offset0_d + ib + 5*nb).s0, sumy, yl); | |
sumf.s6 += block_q_4_0_dot_y_flat(q_blk_6, read_imageh(src0_d, offset0_d + ib + 6*nb).s0, sumy, yl); | |
sumf.s7 += block_q_4_0_dot_y_flat(q_blk_7, read_imageh(src0_d, offset0_d + ib + 7*nb).s0, sumy, yl); | |
yb += QK4_0 * (N_SIMDWIDTH/THREADS_PER_BLK); | |
} | |
SUM_TY tot = (SUM_TY)( | |
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1) | |
, sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3) | |
, sub_group_reduce_add(sumf.s4), sub_group_reduce_add(sumf.s5) | |
, sub_group_reduce_add(sumf.s6), sub_group_reduce_add(sumf.s7) | |
); | |
if (get_sub_group_local_id() == 0) { | |
if (first_row + 0 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0; | |
} | |
if (first_row + 1 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1; | |
} | |
if (first_row + 2 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2; | |
} | |
if (first_row + 3 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3; | |
} | |
if (first_row + 4 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 4] = tot.s4; | |
} | |
if (first_row + 5 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 5] = tot.s5; | |
} | |
if (first_row + 6 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 6] = tot.s6; | |
} | |
if (first_row + 7 < ne01) { | |
dst[r1*ne0 + im*ne0*ne1 + first_row + 7] = tot.s7; | |
} | |
} | |
} | |
//------------------------------------------------------------------------------ | |
// kernel_mul_mv_q6_K_f32 | |
//------------------------------------------------------------------------------ | |
REQD_SUBGROUP_SIZE_16 | |
REQD_SUBGROUP_SIZE_64 | |
kernel void kernel_mul_mv_q6_K_f32( | |
global void * src0, | |
ulong offset0, | |
global float * src1, | |
ulong offset1, | |
global float * dst, | |
ulong offsetd, | |
int ne00, | |
int ne01, | |
int ne02, | |
int ne10, | |
int ne12, | |
int ne0, | |
int ne1, | |
int r2, | |
int r3 | |
) { | |
src0 = (global void*)((global char*)src0 + offset0); | |
src1 = (global float*)((global char*)src1 + offset1); | |
dst = (global float*)((global char*)dst + offsetd); | |
uchar kmask1 = 0x03; | |
uchar kmask2 = 0x0C; | |
uchar kmask3 = 0x30; | |
uchar kmask4 = 0xC0; | |
int nb = ne00/QK_K; | |
int r0 = get_group_id(0); | |
int r1 = get_group_id(1); | |
int im = get_group_id(2); | |
int row = N_SIMDGROUP * r0 + get_sub_group_id(); | |
int i12 = im%ne12; | |
int i13 = im/ne12; | |
ulong offset_src0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); | |
global block_q6_K * x = (global block_q6_K *) src0 + row*nb + offset_src0; | |
global float * yy = (global float *) src1 + r1*ne10 + im*ne00*ne1; | |
float sumf = 0; | |
// For Q6_K quantization, 16 values forms a subblock, 16 subblock forms a | |
// block. Values in a subblock shares a scale that is quantized with 8 bits; | |
// the entire block shares a single floating point scale. | |
// For work distribution, each thread processes a subblock (16 weights), hence | |
// 16 threads process a (super) block -- a subgroup thus handles SIMDWIDTH/16 | |
// (super) blocks -- this is the block stride. | |
// The 16 threads that process a (super) block are split into 2 portions, each has | |
// 8 threads; each portion works on 8 subblocks. | |
// For subgroup of 16 threads, the entire subgroup works on a single (super) block | |
// before moving to the next (super) block. Thread0 - thread7 work on the | |
// first 8 subblocks; thread8 - thread15 works on the last 8 subblocks. | |
// Thread0 - thread3 work on subblocks 0, 2, 4, 6; thread4 - thread7 work on | |
// subblocks 1, 3, 5, 7. Each thread does not work on an entire subblock, but | |
// works on a total of 16 weight values. | |
int tid = get_sub_group_local_id()/BLOCK_STRIDE; // first block_stride groups have tid=0 | |
int ix = get_sub_group_local_id()%BLOCK_STRIDE; // first block is 0..block_stride-1 | |
int ip = tid/8; // first or second half of (super) block (0 or 1) | |
int il = tid%8; // each half has 8 parts, one per scale | |
int n = 4; // 4 scales at a time (and 4 sums) | |
int l0 = n*il; // offset into half-block, 0..28 | |
int is = 8*ip + l0/16; // 0, 1, 8, 9 | |
int y_offset = 128*ip + l0; | |
int q_offset_l = 64*ip + l0; | |
int q_offset_h = 32*ip + l0; | |
for (int i = ix; i < nb; i += BLOCK_STRIDE) { | |
global uint8_t * q1 = x[i].ql + q_offset_l; | |
global uint8_t * q2 = q1 + QK_K/8; | |
global uint8_t * qh = x[i].qh + q_offset_h; | |
global int8_t * sc = x[i].scales + is; | |
global float * y = yy + i * QK_K + y_offset; | |
float dall = x[i].d; | |
float4 sums = {0.f, 0.f, 0.f, 0.f}; | |
sums.s0 += y[0+ 0] * ((float)((q1[0] & 0xF) | ((qh[0] & kmask1) << 4)) - 32.f); | |
sums.s1 += y[0+32] * ((float)((q2[0] & 0xF) | ((qh[0] & kmask2) << 2)) - 32.f); | |
sums.s2 += y[0+64] * ((float)((q1[0] >> 4) | ((qh[0] & kmask3) << 0)) - 32.f); | |
sums.s3 += y[0+96] * ((float)((q2[0] >> 4) | ((qh[0] & kmask4) >> 2)) - 32.f); | |
sums.s0 += y[1+ 0] * ((float)((q1[1] & 0xF) | ((qh[1] & kmask1) << 4)) - 32.f); | |
sums.s1 += y[1+32] * ((float)((q2[1] & 0xF) | ((qh[1] & kmask2) << 2)) - 32.f); | |
sums.s2 += y[1+64] * ((float)((q1[1] >> 4) | ((qh[1] & kmask3) << 0)) - 32.f); | |
sums.s3 += y[1+96] * ((float)((q2[1] >> 4) | ((qh[1] & kmask4) >> 2)) - 32.f); | |
sums.s0 += y[2+ 0] * ((float)((q1[2] & 0xF) | ((qh[2] & kmask1) << 4)) - 32.f); | |
sums.s1 += y[2+32] * ((float)((q2[2] & 0xF) | ((qh[2] & kmask2) << 2)) - 32.f); | |
sums.s2 += y[2+64] * ((float)((q1[2] >> 4) | ((qh[2] & kmask3) << 0)) - 32.f); | |
sums.s3 += y[2+96] * ((float)((q2[2] >> 4) | ((qh[2] & kmask4) >> 2)) - 32.f); | |
sums.s0 += y[3+ 0] * ((float)((q1[3] & 0xF) | ((qh[3] & kmask1) << 4)) - 32.f); | |
sums.s1 += y[3+32] * ((float)((q2[3] & 0xF) | ((qh[3] & kmask2) << 2)) - 32.f); | |
sums.s2 += y[3+64] * ((float)((q1[3] >> 4) | ((qh[3] & kmask3) << 0)) - 32.f); | |
sums.s3 += y[3+96] * ((float)((q2[3] >> 4) | ((qh[3] & kmask4) >> 2)) - 32.f); | |
sumf += dall * (sums.s0 * sc[0] + sums.s1 * sc[2] + sums.s2 * sc[4] + sums.s3 * sc[6]); | |
} | |
float tot = sub_group_reduce_add(sumf); | |
if (get_sub_group_local_id() == 0) { | |
dst[r1*ne0 + im*ne0*ne1 + row] = tot; | |
} | |
} | |