Spaces:
Build error
Build error
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size | |
__launch_bounds__(nwarps*WARP_SIZE, 1) | |
static __global__ void flash_attn_tile_ext_f16( | |
const char * __restrict__ Q, | |
const char * __restrict__ K, | |
const char * __restrict__ V, | |
const char * __restrict__ mask, | |
float * __restrict__ dst, | |
float2 * __restrict__ dst_meta, | |
const float scale, | |
const float max_bias, | |
const float m0, | |
const float m1, | |
const uint32_t n_head_log2, | |
const float logit_softcap, | |
const int ne00, | |
const int ne01, | |
const int ne02, | |
const int ne03, | |
const int ne10, | |
const int ne11, | |
const int ne12, | |
const int ne13, | |
const int ne31, | |
const int nb31, | |
const int nb01, | |
const int nb02, | |
const int nb03, | |
const int nb11, | |
const int nb12, | |
const int nb13, | |
const int nb21, | |
const int nb22, | |
const int nb23, | |
const int ne0, | |
const int ne1, | |
const int ne2, | |
const int ne3) { | |
NO_DEVICE_CODE; | |
return; | |
// Skip unused kernel variants for faster compilation: | |
NO_DEVICE_CODE; | |
return; | |
if (use_logit_softcap && !(D == 128 || D == 256)) { | |
NO_DEVICE_CODE; | |
return; | |
} | |
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. | |
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. | |
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. | |
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. | |
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); | |
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); | |
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape | |
const half * maskh = (const half *) mask + ne11*ic0; | |
const int stride_KV2 = nb11 / sizeof(half2); | |
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); | |
const half slopeh = __float2half(slopef); | |
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); | |
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16]; | |
half2 * KQ2 = (half2 *) KQ; | |
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts. | |
half kqmax[ncols/nwarps]; | |
for (int j0 = 0; j0 < ncols; j0 += nwarps) { | |
kqmax[j0/nwarps] = -HALF_MAX_HALF; | |
} | |
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}}; | |
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; | |
// Convert Q to half2 and store in registers: | |
__shared__ half2 Q_h2[ncols][D/2]; | |
for (int j0 = 0; j0 < ncols; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); | |
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); | |
} | |
} | |
__syncthreads(); | |
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16; | |
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) { | |
// Calculate KQ tile and keep track of new maximum KQ values: | |
half kqmax_new[ncols/nwarps]; | |
for (int j = 0; j < ncols/nwarps; ++j) { | |
kqmax_new[j] = kqmax[j]; | |
} | |
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) { | |
const int i_KQ = i_KQ_0 + threadIdx.y; | |
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { | |
const int k_KQ = k_KQ_0 + threadIdx.x; | |
KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; | |
} | |
} | |
__syncthreads(); | |
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}}; | |
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) { | |
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE]; | |
half2 Q_k[ncols/nwarps]; | |
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | |
const int i_KQ = i_KQ_0 + threadIdx.x; | |
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; | |
} | |
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | |
const int j_KQ = j_KQ_0 + threadIdx.y; | |
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ]; | |
} | |
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | |
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | |
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps]; | |
} | |
} | |
} | |
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { | |
const int i_KQ = i_KQ_0 + threadIdx.x; | |
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | |
const int j_KQ = j_KQ_0 + threadIdx.y; | |
half sum; | |
if (use_logit_softcap) { | |
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | |
sum = logit_softcap * tanhf(tmp.x + tmp.y); | |
} else { | |
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | |
} | |
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); | |
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum); | |
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum; | |
} | |
} | |
__syncthreads(); | |
for (int j0 = 0; j0 < ncols; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); | |
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps])); | |
kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; | |
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]); | |
const half2 val = h2exp(diff); | |
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val; | |
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val; | |
} | |
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; | |
} | |
} | |
__syncthreads(); | |
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) { | |
const int k = k0 + threadIdx.y; | |
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i]; | |
} | |
} | |
__syncthreads(); | |
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) { | |
half2 V_k[(D/2)/WARP_SIZE][2]; | |
half2 KQ_k[ncols/nwarps]; | |
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
const int i = i0 + threadIdx.x; | |
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i]; | |
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i]; | |
} | |
for (int j0 = 0; j0 < ncols; j0 += nwarps) { | |
const int j = j0 + threadIdx.y; | |
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2]; | |
} | |
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
for (int j0 = 0; j0 < ncols; j0 += nwarps) { | |
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]); | |
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]); | |
} | |
} | |
} | |
__syncthreads(); | |
} | |
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { | |
const int j_VKQ = j_VKQ_0 + threadIdx.y; | |
if (ic0 + j_VKQ >= ne01) { | |
return; | |
} | |
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); | |
kqsum_j = warp_reduce_sum((float)kqsum_j); | |
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { | |
const int i0 = i00 + 2*threadIdx.x; | |
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; | |
if (parallel_blocks == 1) { | |
dst_val /= __half2half2(kqsum_j); | |
} | |
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; | |
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val); | |
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val); | |
} | |
if (parallel_blocks != 1 && threadIdx.x == 0) { | |
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); | |
} | |
} | |
NO_DEVICE_CODE; | |
} | |
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap> | |
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * Q = dst->src[0]; | |
switch (Q->ne[0]) { | |
case 64: { | |
constexpr int D = 64; | |
constexpr int nwarps = 8; | |
constexpr size_t nbytes_shared = 0; | |
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; | |
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true); | |
} break; | |
case 128: { | |
constexpr int D = 128; | |
constexpr int nwarps = 8; | |
constexpr size_t nbytes_shared = 0; | |
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; | |
launch_fattn<D, cols_per_block, parallel_blocks, -1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, true, true); | |
} break; | |
default: { | |
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128."); | |
} break; | |
} | |
} | |
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
const ggml_tensor * KQV = dst; | |
const ggml_tensor * Q = dst->src[0]; | |
const int32_t precision = KQV->op_params[3]; | |
GGML_ASSERT(precision == GGML_PREC_DEFAULT); | |
float logit_softcap; | |
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); | |
if (Q->ne[1] <= 16) { | |
constexpr int cols_per_block = 16; | |
constexpr int parallel_blocks = 4; | |
if (logit_softcap == 0.0f) { | |
constexpr bool use_logit_softcap = false; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} else { | |
constexpr bool use_logit_softcap = true; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} | |
return; | |
} | |
if (Q->ne[1] <= 32) { | |
constexpr int cols_per_block = 32; | |
constexpr int parallel_blocks = 4; | |
if (logit_softcap == 0.0f) { | |
constexpr bool use_logit_softcap = false; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} else { | |
constexpr bool use_logit_softcap = true; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} | |
return; | |
} | |
constexpr int cols_per_block = 32; | |
constexpr int parallel_blocks = 1; | |
if (logit_softcap == 0.0f) { | |
constexpr bool use_logit_softcap = false; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} else { | |
constexpr bool use_logit_softcap = true; | |
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | |
} | |
} | |