Spaces:
Build error
Build error
/* | |
* Copyright (c) 2023-2024 The ggml authors | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy | |
* of this software and associated documentation files (the "Software"), to | |
* deal in the Software without restriction, including without limitation the | |
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
* sell copies of the Software, and to permit persons to whom the Software is | |
* furnished to do so, subject to the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
* IN THE SOFTWARE. | |
*/ | |
/** | |
* @brief Repeats elements of a tensor along each dimension according to the | |
* specified repeat array. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor to be repeated. | |
* @param acl_dst The destination tensor after repeating. | |
* @param repeat_array The array specifying the number of repetitions along each | |
* dimension. | |
*/ | |
static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst, int64_t* repeat_array) { | |
// repeat tensor along each dim with repeat_array | |
aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnRepeatGetWorkspaceSize(acl_src, repeats, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
// Memory from allocator will "free" immediately, and this memory | |
// will be alloced to other pointers, but it won't access before | |
// this async task end because all tasks in same stream will execute | |
// in queue. | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnRepeat(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(repeats)); | |
} | |
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(ggml_can_repeat(src, dst)); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2], | |
dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]}; | |
aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Adds two tensors element-wise and stores the result in a destination | |
* tensor. | |
* | |
* This function performs the operation: | |
* \f[ | |
* dst = acl\_src0 + alpha \times acl\_src1 | |
* \f] | |
* where alpha is a scalar value and defaults to 1.0f. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src0 The first source tensor. | |
* @param acl_src1 The second source tensor. | |
* @param acl_dst The destination tensor where the result will be stored. | |
*/ | |
static void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0, | |
aclTensor* acl_src1, aclTensor* acl_dst) { | |
aclScalar* alpha = nullptr; | |
float alphaValue = 1.0f; | |
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(alpha)); | |
} | |
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); | |
aclTensor* acl_src0; | |
aclTensor* acl_src1; | |
aclTensor* acl_dst; | |
// Need bcast | |
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) { | |
BCAST_SHAPE(src0, src1) | |
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0)); | |
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1)); | |
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0)); | |
} else { | |
acl_src0 = ggml_cann_create_tensor(src0); | |
acl_src1 = ggml_cann_create_tensor(src1); | |
acl_dst = ggml_cann_create_tensor(dst); | |
} | |
aclnn_add(ctx, acl_src0, acl_src1, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src0)); | |
ACL_CHECK(aclDestroyTensor(acl_src1)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
float negative_slope; | |
memcpy(&negative_slope, dst->op_params, sizeof(float)); | |
aclScalar* acl_negative_slope = | |
aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnLeakyReluGetWorkspaceSize( | |
acl_src, acl_negative_slope, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnLeakyRelu(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(acl_negative_slope)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Concatenates a list of tensors along a specified dimension and stores | |
* the result in a destination tensor. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param tensorList The list of tensors to be concatenated. | |
* @param acl_dst The destination tensor where the concatenated result will be | |
* stored. | |
* @param concat_dim The dimension along which the tensors will be concatenated. | |
*/ | |
static void aclnn_concat(ggml_backend_cann_context& ctx, | |
aclTensorList* tensorList, aclTensor* acl_dst, | |
int64_t concat_dim) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnCatGetWorkspaceSize(tensorList, concat_dim, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnCat(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
aclTensor* acl_src0 = ggml_cann_create_tensor(src0); | |
aclTensor* acl_src1 = ggml_cann_create_tensor(src1); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
const int32_t dim = ggml_get_op_params_i32(dst, 0); | |
GGML_ASSERT(dim >= 0 && dim < 4); | |
int32_t acl_dim = 3 - dim; | |
aclTensor* tensors[] = {acl_src0, acl_src1}; | |
aclTensorList* tensorList = aclCreateTensorList(tensors, 2); | |
aclnn_concat(ctx, tensorList, acl_dst, acl_dim); | |
ACL_CHECK(aclDestroyTensorList(tensorList)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Creates a tensor with values starting from `start`, incremented by | |
* `step`, and ending before `stop`. | |
* | |
* This function performs the operation: | |
* \f[ | |
* \text {out }_{i+1}=\text {out }_i+\text {step} | |
* \f] | |
* the range is [start, stop). | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_dst The destination tensor where the values will be stored. | |
* @param start The starting value of the range. | |
* @param stop The ending value of the range (exclusive). | |
* @param step The step size between consecutive values. | |
* @param n_elements The number of elements in the destination tensor. | |
*/ | |
static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst, | |
float start, float stop, float step, | |
int64_t n_elements) { | |
int64_t steps = (int64_t)std::ceil((stop - start) / step); | |
GGML_ASSERT(n_elements == steps); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT); | |
aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT); | |
aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT); | |
ACL_CHECK(aclnnArangeGetWorkspaceSize(acl_start, acl_end, acl_step, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnArange(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(acl_start)); | |
ACL_CHECK(aclDestroyScalar(acl_end)); | |
ACL_CHECK(aclDestroyScalar(acl_step)); | |
} | |
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
int64_t n_elements = ggml_nelements(dst); | |
float start; | |
float stop; | |
float step; | |
memcpy(&start, (float*)dst->op_params + 0, sizeof(float)); | |
memcpy(&stop, (float*)dst->op_params + 1, sizeof(float)); | |
memcpy(&step, (float*)dst->op_params + 2, sizeof(float)); | |
aclnn_arange(ctx, acl_dst, start, stop, step, n_elements); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
dst->src[1] = dst->src[0]; | |
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst); | |
} | |
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
float min; | |
float max; | |
memcpy(&min, dst->op_params, sizeof(float)); | |
memcpy(&max, (float*)dst->op_params + 1, sizeof(float)); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT); | |
aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnClampGetWorkspaceSize(acl_src, acl_min, acl_max, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnClamp(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(acl_min)); | |
ACL_CHECK(aclDestroyScalar(acl_max)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
// scale factor | |
float v; | |
memcpy(&v, dst->op_params, sizeof(float)); | |
aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT); | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, scale, acl_dst, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(scale)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
ggml_cann_pool_alloc temp_buffer_allocator( | |
ctx.pool(), ggml_nelements(dst) * sizeof(int64_t)); | |
void* buffer = temp_buffer_allocator.get(); | |
aclTensor* tmp_tensor = | |
ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type), | |
dst->ne, dst->nb, GGML_MAX_DIMS); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnArgsortGetWorkspaceSize( | |
acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnArgsort(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
workspaceSize = 0; | |
ACL_CHECK(aclnnCastGetWorkspaceSize(tmp_tensor, | |
ggml_cann_type_mapping(dst->type), | |
acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(tmp_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
std::vector<int64_t> normData = {dst->ne[0]}; | |
aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size()); | |
ACL_CHECK(aclnnLayerNormGetWorkspaceSize(acl_src, norm, nullptr, nullptr, | |
eps, acl_dst, nullptr, nullptr, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnLayerNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(norm)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
int n_groups = dst->op_params[0]; | |
float eps; | |
memcpy(&eps, dst->op_params + 1, sizeof(float)); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
int64_t N = src->ne[3]; | |
int64_t C = src->ne[2]; | |
int64_t HxW = src->ne[1] * src->ne[0]; | |
size_t type_size = ggml_type_size(src->type); | |
int64_t ne[] = {n_groups, N}; | |
size_t nb[] = {type_size, type_size * n_groups}; | |
size_t n_bytes = N * n_groups; | |
ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2); | |
void* buffer = temp_buffer_allocator.get(); | |
aclTensor* acl_mean_out = ggml_cann_create_tensor( | |
buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); | |
aclTensor* acl_rstd_out = ggml_cann_create_tensor( | |
(char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND); | |
ACL_CHECK(aclnnGroupNormGetWorkspaceSize( | |
acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst, | |
acl_mean_out, acl_rstd_out, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnGroupNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyTensor(acl_mean_out)); | |
ACL_CHECK(aclDestroyTensor(acl_rstd_out)); | |
} | |
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
size_t nb1 = ((int32_t*)dst->op_params)[0]; | |
size_t nb2 = ((int32_t*)dst->op_params)[1]; | |
size_t nb3 = ((int32_t*)dst->op_params)[2]; | |
size_t offset = ((int32_t*)dst->op_params)[3]; | |
bool inplace = (bool)((int32_t*)dst->op_params)[4]; | |
size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3}; | |
aclTensor* acl_dst = ggml_cann_create_tensor( | |
dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); | |
aclTensor* acl_src1 = ggml_cann_create_tensor(src1); | |
aclScalar* alpha = nullptr; | |
float alphaValue = 1.0f; | |
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
if (!inplace) { | |
size_t cpy_size = ggml_nbytes(dst); | |
ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src0->data, cpy_size, | |
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); | |
aclTensor* acl_src0 = ggml_cann_create_tensor( | |
src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset); | |
ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src0)); | |
} else { | |
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src1, alpha, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
} | |
ACL_CHECK(aclDestroyTensor(acl_src1)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
GGML_ASSERT(dst->ne[0] == 1); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
int64_t reduce_dims_host[] = {3}; | |
aclIntArray* reduce_dims = aclCreateIntArray(reduce_dims_host, 1); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnReduceSumGetWorkspaceSize( | |
acl_src, reduce_dims, true, ggml_cann_type_mapping(src->type), acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnReduceSum(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = | |
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
aclTensor* acl_dst = | |
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
std::vector<int64_t> output_size{dst->ne[1], dst->ne[0]}; | |
auto output_size_array = aclCreateIntArray(output_size.data(), 2); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnUpsampleNearest2dGetWorkspaceSize( | |
acl_src, output_size_array, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnUpsampleNearest2d(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(output_size_array)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Pads a tensor with a specified value along each dimension. | |
* | |
* This function performs padding of the source tensor `acl_src` and stores the | |
* result in the destination tensor `acl_dst`. The padding values for each | |
* dimension are specified in the `paddings` array. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor to be padded. | |
* @param acl_dst The destination tensor where the padded result will be stored. | |
* @param paddings An array specifying the padding values for each dimension. | |
* The size of the array should be twice the number of dimensions of the tensor. | |
* @param value The value to be used for padding. The default value is 0.0. | |
*/ | |
static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst, int64_t* paddings, | |
float value = 0.0f) { | |
aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2); | |
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnConstantPadNdGetWorkspaceSize( | |
acl_src, acl_pad, acl_value, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnConstantPadNd(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(acl_pad)); | |
ACL_CHECK(aclDestroyScalar(acl_value)); | |
} | |
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
// padding: value in the array means how much distance will be padding. | |
// the position of elements in the array means which dirction to padding, | |
// each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind, | |
// dim2.front, dim2.behind, dim3.front, dim3.behind] | |
int64_t paddings[] = { | |
0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1], | |
0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]}; | |
aclnn_pad(ctx, acl_src, acl_dst, paddings); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
} | |
/** | |
* @brief Performs 2D average pooling on the input tensor and stores the result | |
* in the destination tensor. | |
* | |
* This function performs average pooling on the source tensor and stores the | |
* result in the destination tensor. The pooling parameters (kernel size, | |
* strides, padding) are specified in the `op_params` of the destination tensor. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param dst The destination tensor where the result will be stored. The source | |
* tensor is referenced by `dst->src[0]`. | |
*/ | |
static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_src = | |
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
aclTensor* acl_dst = | |
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
const int32_t* opts = (const int32_t*)dst->op_params; | |
const int k0 = opts[1]; | |
const int k1 = opts[2]; | |
const int s0 = opts[3]; | |
const int s1 = opts[4]; | |
const int p0 = opts[5]; | |
const int p1 = opts[6]; | |
std::vector<int64_t> kernel_dims = {k1, k0}; | |
std::vector<int64_t> stride_dims = {s1, s0}; | |
std::vector<int64_t> padding_avg_dims = {p1, p0}; // (padH, padW) | |
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); | |
auto* strides = aclCreateIntArray(stride_dims.data(), 2); | |
auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2); | |
bool ceil_mode = false; | |
bool count_include_pad = true; | |
int64_t divisor_override = 0; | |
int8_t cube_math_type = 0; | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnAvgPool2dGetWorkspaceSize( | |
acl_src, kernel_size, strides, paddings_avg, ceil_mode, | |
count_include_pad, divisor_override, cube_math_type, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyIntArray(kernel_size)); | |
ACL_CHECK(aclDestroyIntArray(strides)); | |
ACL_CHECK(aclDestroyIntArray(paddings_avg)); | |
} | |
/** | |
* @brief Performs 2D max pooling on the input tensor and stores the result in | |
* the destination tensor. | |
* | |
* This function performs max pooling on the source tensor and stores the result | |
* in the destination tensor. The pooling parameters (kernel size, strides, | |
* padding) are specified in the `op_params` of the destination tensor. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param dst The destination tensor where the result will be stored. The source | |
* tensor is referenced by `dst->src[0]`. | |
*/ | |
static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
aclTensor* acl_src = | |
ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
aclTensor* acl_dst = | |
ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW); | |
const int32_t* opts = (const int32_t*)dst->op_params; | |
const int k0 = opts[1]; | |
const int k1 = opts[2]; | |
const int s0 = opts[3]; | |
const int s1 = opts[4]; | |
const int p0 = opts[5]; | |
const int p1 = opts[6]; | |
int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2], | |
src->ne[3]}; | |
size_t temp_nb[GGML_MAX_DIMS]; | |
temp_nb[0] = ggml_element_size(src); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1]; | |
} | |
ggml_cann_pool_alloc temp_buffer_allocator( | |
ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]); | |
void* buffer = temp_buffer_allocator.get(); | |
aclTensor* tmp_tensor = ggml_cann_create_tensor( | |
buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_NCHW); | |
// pad: see padding in ggml_cann_pad() | |
int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0}; | |
float value = -FLT_MAX; | |
aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value); | |
// max_pool | |
std::vector<int64_t> kernel_dims = {k1, k0}; | |
std::vector<int64_t> stride_dims = {s1, s0}; | |
// padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end] | |
std::vector<int64_t> padding_max_dims = {0, 0, 0, 0}; | |
std::vector<int64_t> dilation_size = {1, 1}; | |
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); | |
auto* strides = aclCreateIntArray(stride_dims.data(), 2); | |
auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4); | |
auto* dilations = aclCreateIntArray(dilation_size.data(), 2); | |
bool ceil_mode = false; | |
int64_t auto_pads = 0; | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnMaxPoolGetWorkspaceSize( | |
tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations, | |
ceil_mode, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnMaxPool(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyTensor(tmp_tensor)); | |
ACL_CHECK(aclDestroyIntArray(kernel_size)); | |
ACL_CHECK(aclDestroyIntArray(strides)); | |
ACL_CHECK(aclDestroyIntArray(paddings_max)); | |
ACL_CHECK(aclDestroyIntArray(dilations)); | |
} | |
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
const int32_t* opts = (const int32_t*)dst->op_params; | |
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]); | |
switch (op) { | |
case GGML_OP_POOL_AVG: | |
ggml_cann_avg_pool2d(ctx, dst); | |
break; | |
case GGML_OP_POOL_MAX: | |
ggml_cann_max_pool2d(ctx, dst); | |
break; | |
case GGML_OP_POOL_COUNT: | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
/** | |
* @brief Copies data from the source tensor to the destination tensor. | |
* | |
* This function copies data from the source tensor `acl_src` to the destination | |
* tensor `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor from which data will be copied. | |
* @param acl_dst The destination tensor where the data will be copied to. | |
*/ | |
static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceCopyGetWorkspaceSize(acl_dst, acl_src, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); | |
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); | |
src->extra = src_extra_allocator.get(); | |
dst->extra = dst_extra_allocator.get(); | |
ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src, | |
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, | |
ctx.stream())); | |
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst, | |
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, | |
ctx.stream())); | |
if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) && | |
ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
// TODO: simplify | |
if (src->type == GGML_TYPE_F16) { | |
if (dst->type == GGML_TYPE_Q8_0) { | |
aclrtlaunch_ascendc_quantize_f16_q8_0( | |
24, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne); | |
return; | |
} | |
if (dst->type == GGML_TYPE_Q4_0) { | |
aclrtlaunch_ascendc_quantize_f16_to_q4_0( | |
24, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne); | |
return; | |
} | |
if (dst->type == GGML_TYPE_F16) { | |
if (ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
if (ggml_is_contiguous(dst)) { | |
const size_t src_type_size = ggml_type_size(src->type); | |
if (src->nb[0] == src_type_size) { | |
// src0 is contigous on first dimension, copy by rows | |
int64_t rows_num = ggml_nrows(src); | |
aclrtlaunch_ascendc_dup_by_rows_fp16( | |
rows_num, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, | |
((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
return; | |
} | |
GGML_ABORT("fatal error"); | |
} | |
GGML_ABORT("fatal error"); | |
} | |
if (dst->type == GGML_TYPE_F32) { | |
if (ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
if (ggml_is_contiguous(dst)) { | |
const size_t src_type_size = ggml_type_size(src->type); | |
if (src->nb[0] == src_type_size) { | |
// src0 is contigous on first dimension, copy by rows | |
int64_t rows_num = ggml_nrows(src); | |
aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32( | |
rows_num, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, | |
((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
return; | |
} | |
GGML_ABORT("fatal error"); | |
} | |
GGML_ABORT("fatal error"); | |
} | |
// TODO | |
GGML_ABORT("fatal error"); | |
} else if (src->type == GGML_TYPE_F32) { | |
// TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size | |
// && nb0 == type_size) | |
if (dst->type == GGML_TYPE_Q8_0) { | |
aclrtlaunch_ascendc_quantize_f32_q8_0( | |
24, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne); | |
return; | |
} | |
if (dst->type == GGML_TYPE_Q4_0) { | |
aclrtlaunch_ascendc_quantize_f32_to_q4_0( | |
24, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne); | |
return; | |
} | |
if (dst->type == GGML_TYPE_F32) { | |
if (ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
if (ggml_is_contiguous(dst)) { | |
const size_t src_type_size = ggml_type_size(src->type); | |
if (src->nb[0] == src_type_size) { | |
// src0 is contigous on first dimension, copy by rows | |
int64_t rows_num = ggml_nrows(src); | |
aclrtlaunch_ascendc_dup_by_rows_fp32( | |
rows_num, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, | |
((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
return; | |
} | |
GGML_ABORT("fatal error"); | |
} else { | |
// TODO: dst not contiguous | |
GGML_ABORT("fatal error"); | |
} | |
} | |
if (dst->type == GGML_TYPE_F16) { | |
if (ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
if (ggml_is_contiguous(dst)) { | |
const size_t src_type_size = ggml_type_size(src->type); | |
if (src->nb[0] == src_type_size) { | |
// src0 is contigous on first dimension, copy by rows | |
int64_t rows_num = ggml_nrows(src); | |
aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16( | |
rows_num, ctx.stream(), src->data, dst->data, | |
((ggml_tensor*)src->extra)->ne, | |
((ggml_tensor*)src->extra)->nb, | |
((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
return; | |
} | |
GGML_ABORT("fatal error"); | |
} | |
} | |
// TODO | |
GGML_ABORT("fatal error"); | |
} else { | |
if (ggml_are_same_shape(src, dst)) { | |
cann_copy(ctx, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
return; | |
} | |
GGML_ABORT("fatal error"); | |
} | |
} | |
extern "C" { | |
aclnnStatus aclnnRmsNormGetWorkspaceSize(const aclTensor* x, | |
const aclTensor* gamma, double epsilon, | |
const aclTensor* yOut, | |
const aclTensor* rstdOout, | |
uint64_t* workspaceSize, | |
aclOpExecutor** executor); | |
aclnnStatus aclnnRmsNorm(void* workspace, uint64_t workspaceSize, | |
aclOpExecutor* executor, aclrtStream stream); | |
} | |
/** | |
* @brief Creates an ACL tensor initialized with zeros using a provided buffer. | |
* | |
* This function initializes a tensor with zeros using the specified buffer and | |
* tensor parameters. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param buffer The buffer to be used for the tensor data. | |
* @param n_bytes The size of the buffer in bytes. | |
* @param ne An array specifying the extents (sizes) of each dimension of the | |
* tensor. | |
* @param dims The number of dimensions of the tensor. | |
* @param type The data type of the tensor. | |
* @param type_size The size of each element in the tensor data type. | |
* @return An ACL tensor initialized with zeros. | |
*/ | |
static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer, | |
size_t n_bytes, int64_t* ne, int64_t dims, | |
aclDataType type, size_t type_size) { | |
size_t nb[GGML_MAX_DIMS]; | |
nb[0] = type_size; | |
for (int i = 1; i < dims; i++) { | |
nb[i] = nb[i - 1] * ne[i - 1]; | |
} | |
ACL_CHECK(aclrtMemsetAsync(buffer, n_bytes, 0, n_bytes, ctx.stream())); | |
aclTensor* zero = | |
ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims); | |
return zero; | |
} | |
/** | |
* @brief Creates an ACL tensor initialized with value using a provided buffer. | |
* | |
* This function initializes a tensor with value using the specified buffer and | |
* tensor parameters. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param buffer The buffer to be used for the tensor data. | |
* @param n_bytes The size of the buffer in bytes. | |
* @param ne An array specifying the extents (sizes) of each dimension of the | |
* tensor. | |
* @param dims The number of dimensions of the tensor. | |
* @param type The data type of the tensor. | |
* @param type_size The size of each element in the tensor data type. | |
* @param value The value to be used for initializing the tensor (default | |
* is 1.0). | |
* @return An ACL tensor initialized with value. | |
*/ | |
static aclTensor* aclnn_values(ggml_backend_cann_context& ctx, void* buffer, | |
size_t n_bytes, int64_t* ne, int64_t dims, | |
aclDataType type, size_t type_size, | |
float value = 1.0f) { | |
aclTensor* acl_tensor = | |
aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size); | |
float alpha_host = 1.0f; | |
aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT); | |
aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceAddsGetWorkspaceSize(acl_tensor, other, alpha, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceAdds(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
return acl_tensor; | |
} | |
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
float eps; | |
memcpy(&eps, dst->op_params, sizeof(float)); | |
GGML_ASSERT(eps > 0.0f); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src); | |
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes); | |
aclTensor* acl_gamma = aclnn_values( | |
ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1, | |
ggml_cann_type_mapping(src->type), ggml_element_size(src)); | |
size_t zero_tensor_n_bytes = | |
src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src); | |
ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes); | |
aclTensor* acl_rstd = | |
aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes, | |
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type), | |
ggml_element_size(src)); | |
ACL_CHECK(aclnnRmsNormGetWorkspaceSize( | |
acl_src, acl_gamma, eps, acl_dst, acl_rstd, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnRmsNorm(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyTensor(acl_gamma)); | |
ACL_CHECK(aclDestroyTensor(acl_rstd)); | |
} | |
// TODO: performace is low. | |
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, | |
float value) { | |
ggml_tensor* src = dst->src[0]; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
const int n_past = ((int32_t*)dst->op_params)[0]; | |
size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] * | |
src->ne[3] * ggml_element_size(src); | |
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes); | |
aclTensor* mask_tensor = | |
aclnn_values(ctx, one_tensor_allocator.get(), one_tensor_n_bytes, | |
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type), | |
ggml_element_size(src), value); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceTriuGetWorkspaceSize(mask_tensor, n_past + 1, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceTriu(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclnnTrilGetWorkspaceSize(acl_src, n_past + 1, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnTril(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
aclScalar* alpha = nullptr; | |
float alphaValue = 1.0f; | |
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); | |
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, mask_tensor, alpha, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(alpha)); | |
ACL_CHECK(aclDestroyTensor(mask_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Casts the data type of a source tensor to a destination tensor. | |
* | |
* This function casts the data type of the source tensor `acl_src` to the | |
* specified data type `cast_data_type` and stores the result in the destination | |
* tensor `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor whose data type will be casted. | |
* @param acl_dst The destination tensor where the casted result will be stored. | |
* @param cast_data_type The target data type to which the source tensor will be | |
* casted. | |
*/ | |
static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst, aclDataType cast_data_type) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src, cast_data_type, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Permutes the dimensions of a tensor according to a specified order. | |
* | |
* This function permutes the dimensions of the source tensor `acl_src` | |
* according to the order specified in the `new_dim` array and stores the result | |
* in the destination tensor `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor whose dimensions will be permuted. | |
* @param acl_dst The destination tensor where the permuted result will be | |
* stored. | |
* @param new_dim An array specifying the new order of dimensions for the | |
* tensor. | |
* @param dims The number of dimensions in the tensor. | |
*/ | |
static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) { | |
aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnPermuteGetWorkspaceSize(acl_src, acl_dims, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnPermute(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(acl_dims)); | |
} | |
extern "C" { | |
aclnnStatus aclnnIm2colGetWorkspaceSize(const aclTensor* self, | |
const aclIntArray* kernelSize, | |
const aclIntArray* dilation, | |
const aclIntArray* padding, | |
const aclIntArray* stride, | |
aclTensor* out, uint64_t* workspaceSize, | |
aclOpExecutor** executor); | |
aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize, | |
aclOpExecutor* executor, aclrtStream stream); | |
} | |
static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst, | |
ggml_tensor* src1, | |
aclTensor* tmp_cast_tensor, | |
aclTensor* tmp_im2col_tensor) { | |
// Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW] | |
int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]}; | |
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]}; | |
aclTensor* acl_dst = | |
ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1); | |
int64_t permute_dim[] = {0, 2, 1}; | |
if (src1->type != dst->type) { | |
aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3); | |
} else { | |
aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3); | |
} | |
// release | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
static void ggml_cann_im2col_1d_post_process( | |
ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1, | |
aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor, | |
const std::vector<int64_t>& im2col_op_params) { | |
// get params | |
const int64_t KH = im2col_op_params[0]; | |
const int64_t KW = im2col_op_params[1]; | |
const int64_t IW = im2col_op_params[2]; | |
const int64_t IC = im2col_op_params[3]; | |
const int64_t N = im2col_op_params[4]; | |
const int64_t OH = im2col_op_params[5]; | |
const int64_t OW = im2col_op_params[6]; | |
const int64_t s0 = im2col_op_params[7]; | |
const int64_t p0 = im2col_op_params[8]; | |
const int64_t d0 = im2col_op_params[9]; | |
const int64_t n_bytes_factor = im2col_op_params[10]; | |
// Permute: [N, IC * KH * KW, OW * OH] -> | |
// [N, OW * OH * n_bytes_factor, IC * KH * KW] | |
aclTensor* tmp_permute_tensor = nullptr; | |
ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool()); | |
tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); | |
void* tmp_permute_buffer = tmp_permute_allocator.get(); | |
int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N}; | |
size_t tmp_permute_nb[GGML_MAX_DIMS - 1]; | |
tmp_permute_nb[0] = ggml_type_size(dst->type); | |
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { | |
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; | |
} | |
tmp_permute_tensor = ggml_cann_create_tensor( | |
tmp_permute_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb, | |
GGML_MAX_DIMS - 1, ACL_FORMAT_ND); | |
int64_t permute_dim[] = {0, 2, 1}; | |
if (src1->type != dst->type) { | |
aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3); | |
} else { | |
aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim, | |
3); | |
} | |
// number of times the kernel moves in W dimension | |
const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1; | |
size_t offset; | |
void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer; | |
// memory copy with offset to restore 1D im2col from 2d | |
if (IC > 1) { | |
offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type); | |
size_t size_cpy = KH * KW * ggml_type_size(dst->type); | |
for (int c = 0; c < IC; c++) { | |
cur_permute_buffer = (char*)tmp_permute_buffer + offset + | |
KH * KW * c * ggml_type_size(dst->type); | |
cur_dst_buffer = (char*)dst->data + | |
c * KH * KW * n_step_w * ggml_type_size(dst->type); | |
for (int i = 0; i < n_step_w; i++) { | |
ACL_CHECK(aclrtMemcpyAsync( | |
cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy, | |
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); | |
cur_dst_buffer = | |
(char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type); | |
cur_permute_buffer = (char*)cur_permute_buffer + | |
KH * KW * IC * ggml_type_size(dst->type); | |
} | |
} | |
} else { | |
offset = KH * KW * n_step_w * | |
ggml_type_size(dst->type); // equal to ggml_nbytes(dst) | |
ACL_CHECK(aclrtMemcpyAsync(dst->data, offset, | |
(char*)tmp_permute_buffer + offset, offset, | |
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream())); | |
} | |
// release | |
ACL_CHECK(aclDestroyTensor(tmp_permute_tensor)); | |
} | |
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; // kernel | |
ggml_tensor* src1 = dst->src[1]; // input | |
GGML_TENSOR_BINARY_OP_LOCALS; | |
// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D | |
// im2col and do post-processing to restore it to 1D. | |
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1; | |
const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; | |
const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1; | |
const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; | |
const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1; | |
const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; | |
const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1; | |
const int64_t N = ne13; | |
const int64_t IC = ne12; | |
const int64_t KH = ne01; | |
const int64_t KW = ne00; | |
const int64_t IW = ne10; | |
const int64_t OH = is_2D ? ne2 : 1; | |
const int64_t OW = ne1; | |
// memory allocated increased to 3x when is_2D == false | |
const int64_t n_bytes_factor = is_2D ? 1 : 3; | |
// im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor] | |
aclTensor* acl_src1 = ggml_cann_create_tensor(src1); | |
int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N}; | |
size_t tmp_im2col_nb[GGML_MAX_DIMS - 1]; | |
tmp_im2col_nb[0] = ggml_type_size(src1->type); | |
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { | |
tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1]; | |
} | |
// Calculate im2col. | |
// If dst is f16, tmp_buffer is f32, we need alloc src.typesize * | |
// dst.elemcount. | |
ggml_cann_pool_alloc im2col_allocator( | |
ctx.pool(), | |
ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor); | |
void* tmp_im2col_buffer = im2col_allocator.get(); | |
aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor( | |
tmp_im2col_buffer, ggml_cann_type_mapping(src1->type), | |
ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb, | |
GGML_MAX_DIMS - 1, ACL_FORMAT_ND); | |
std::vector<int64_t> kernel_dims = {KH, KW}; | |
std::vector<int64_t> dilation_size = {d1, d0}; | |
std::vector<int64_t> padding_dims = {p1, p0}; | |
std::vector<int64_t> stride_dims = {s1, s0}; | |
auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2); | |
auto* dilations = aclCreateIntArray(dilation_size.data(), 2); | |
auto* paddings = aclCreateIntArray(padding_dims.data(), 2); | |
auto* strides = aclCreateIntArray(stride_dims.data(), 2); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnIm2colGetWorkspaceSize(acl_src1, kernel_size, dilations, | |
paddings, strides, tmp_im2col_tensor, | |
&workspaceSize, &executor)); | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool()); | |
if (workspaceSize > 0) { | |
workspace_allocator.alloc(workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnIm2col(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
// Cast if dst is f16. | |
aclTensor* tmp_cast_tensor = nullptr; | |
ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool()); | |
void* tmp_cast_buffer = nullptr; | |
if (src1->type != dst->type) { | |
tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor); | |
tmp_cast_buffer = tmp_cast_allocator.get(); | |
size_t temp_cast_nb[GGML_MAX_DIMS - 1]; | |
temp_cast_nb[0] = ggml_type_size(dst->type); | |
for (int i = 1; i < GGML_MAX_DIMS - 1; i++) { | |
temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1]; | |
} | |
tmp_cast_tensor = ggml_cann_create_tensor( | |
tmp_cast_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb, | |
GGML_MAX_DIMS - 1, ACL_FORMAT_ND); | |
aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor, | |
ggml_cann_type_mapping(dst->type)); | |
} | |
// post-processing | |
if (is_2D) { | |
ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor, | |
tmp_im2col_tensor); | |
} else { | |
std::vector<int64_t> im2col_op_params = { | |
KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor}; | |
ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor, | |
tmp_im2col_tensor, im2col_op_params); | |
} | |
// release | |
ACL_CHECK(aclDestroyTensor(acl_src1)); | |
ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_cast_tensor)); | |
ACL_CHECK(aclDestroyIntArray(kernel_size)); | |
ACL_CHECK(aclDestroyIntArray(dilations)); | |
ACL_CHECK(aclDestroyIntArray(paddings)); | |
ACL_CHECK(aclDestroyIntArray(strides)); | |
} | |
/** | |
* @brief Applies element-wise exponential function to the elements of a tensor. | |
* | |
* This function computes the exponential of each element in the source tensor | |
* `acl_src` and stores the result back into the same tensor. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_src }_i=e^{acl\_src_i} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The tensor on which the exponential function will be applied. | |
*/ | |
static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK( | |
aclnnInplaceExpGetWorkspaceSize(acl_src, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceExp(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Multiplies elements of a tensor by a scalar value, optionally | |
* in-place. | |
* | |
* This function multiplies each element of the source tensor `acl_src` by the | |
* scalar `scale` and stores the result in the destination tensor `acl_dst`. If | |
* `inplace` is true, `acl_dst` will not be used and the operation is performed | |
* in-place on `acl_src`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=\text {acl_src }_i \times \text {scale} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor whose elements will be multiplied. | |
* @param scale The scalar value by which each element of `acl_src` will be | |
* multiplied. | |
* @param acl_dst The destination tensor where the result will be stored if | |
* `inplace` is false. | |
* @param inplace Flag indicating whether to perform the operation in-place on | |
* `acl_src`. | |
*/ | |
static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
float scale, aclTensor* acl_dst, bool inplace) { | |
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
if (inplace) { | |
ACL_CHECK(aclnnInplaceMulsGetWorkspaceSize(acl_src, acl_scale, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceMuls(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
} else { | |
ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, acl_scale, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
ACL_CHECK(aclDestroyScalar(acl_scale)); | |
} | |
/** | |
* @brief Performs an in-place element-wise multiplication of two tensors. | |
* | |
* This function performs an element-wise multiplication of the tensors | |
* `acl_src` and `acl_other` and stores the result in `acl_src`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_src }_i=\text {acl_src }_i \times \text {acl_other }_i | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor where the multiplication result will be | |
* stored. | |
* @param acl_other The tensor whose elements will be multiplied with `acl_src`. | |
*/ | |
static void aclnn_inplace_mul(ggml_backend_cann_context& ctx, | |
aclTensor* acl_src, aclTensor* acl_other) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceMulGetWorkspaceSize(acl_src, acl_other, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceMul(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs element-wise multiplication of two tensors and stores the | |
* result in a destination tensor. | |
* | |
* This function performs element-wise multiplication of the tensors `acl_src` | |
* and `acl_other` and stores the result in the destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The first tensor for element-wise multiplication. | |
* @param acl_other The second tensor for element-wise multiplication. | |
* @param acl_dst The destination tensor where the result will be stored. | |
*/ | |
static void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_other, aclTensor* acl_dst) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnMulGetWorkspaceSize(acl_src, acl_other, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnMul(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Applies element-wise cosine function to the elements of a tensor. | |
* | |
* This function computes the cosine of each element in the source tensor | |
* `acl_src` and stores the result in the destination tensor `acl_dst`. The | |
* operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src | |
* }_i\right) \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor on which the cosine function will be | |
* applied. | |
* @param acl_dst The destination tensor where the cosine results will be | |
* stored. | |
*/ | |
static void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK( | |
aclnnCosGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnCos(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Applies element-wise sine function to the elements of a tensor. | |
* | |
* This function computes the sine of each element in the source tensor | |
`acl_src` | |
* and stores the result in the destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right) | |
* \f] | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor on which the sine function will be applied. | |
* @param acl_dst The destination tensor where the sine results will be stored. | |
*/ | |
static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK( | |
aclnnSinGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs element-wise division of tensor1 by tensor2 , multiplies the | |
result by the scalar value and adds it to self . | |
* | |
* Performs element-wise division of tensor1 by tensor2, | |
* multiplies the result by the scalar value and adds it to self . | |
* The operation is defined as: | |
* \f[ | |
* \text{out}_i = \text{selft}_i + \text{value} \times | |
\frac{\text{tensor1}_i}{\text{tensor2}_i} | |
* \f] | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_self The source tensor on which the addcdiv function will be | |
applied. | |
* @param tensor1 Numerator tensor. | |
* @param tensor2 Denominator tensor. | |
* @param value The value to be used for coefficient. | |
*/ | |
static void aclnn_inplace_addcdiv(ggml_backend_cann_context& ctx, | |
aclTensor* acl_self, aclTensor* tensor1, | |
aclTensor* tensor2, float value) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); | |
ACL_CHECK(aclnnInplaceAddcdivGetWorkspaceSize( | |
acl_self, tensor1, tensor2, acl_value, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceAddcdiv(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
} | |
/** | |
* @brief Matrix division, optionally in-place. | |
* | |
* This function division each element of the source tensor `acl_src` by the | |
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`. | |
* If `inplace` is true, `acl_dst` will not be used and the operation is | |
* performed in-place on `acl_src`. The operation is defined as: \f[ | |
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src Numerator tensor.. | |
* @param acl_other Denominator tensor. | |
* @param acl_dst The destination tensor where the result will be stored if | |
* `inplace` is false. | |
* @param inplace Flag indicating whether to perform the operation in-place on | |
* `acl_src`. | |
*/ | |
static void aclnn_div_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_other, aclTensor* acl_dst, | |
bool inplace) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
if (inplace) { | |
ACL_CHECK(aclnnInplaceDivGetWorkspaceSize(acl_src, acl_other, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceDiv(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
} else { | |
ACL_CHECK(aclnnDivGetWorkspaceSize(acl_src, acl_other, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnDiv(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
} | |
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst) { | |
const ggml_tensor* src = dst->src[0]; | |
GGML_ASSERT(src->type == GGML_TYPE_F32); | |
GGML_ASSERT(dst->type == GGML_TYPE_F32); | |
const int dim = dst->op_params[0]; | |
const int max_period = dst->op_params[1]; | |
int half = dim / 2; | |
aclTensor* acl_src = ggml_cann_create_tensor(src); | |
// arange: [0, ..., half) | |
float start = 0; | |
float stop = half; | |
float step = 1; | |
int64_t n_elements_arange = half; | |
int64_t tmp_arange_ne[] = {half}; | |
size_t tmp_arange_nb[] = {sizeof(dst->type)}; | |
ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type)); | |
void* tmp_arange_buffer = arange_allocator.get(); | |
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor( | |
tmp_arange_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb, | |
GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange); | |
// freq | |
float freq_param = -logf(max_period) / half; | |
bool inplace = true; | |
aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace); | |
aclnn_exp(ctx, tmp_arange_tensor); | |
// permute: src [0,1,2,3]->[0,1,3,2] | |
int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]}; | |
size_t tmp_permute_nb[GGML_MAX_DIMS]; | |
tmp_permute_nb[0] = ggml_type_size(src->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1]; | |
} | |
ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src)); | |
void* tmp_permute_buffer = permute_allocator.get(); | |
aclTensor* tmp_permute_tenosr = ggml_cann_create_tensor( | |
tmp_permute_buffer, ggml_cann_type_mapping(src->type), | |
ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_ND); | |
int64_t permute_dim[] = {0, 1, 3, 2}; | |
int64_t num_dims = 4; | |
aclnn_permute(ctx, acl_src, tmp_permute_tenosr, permute_dim, num_dims); | |
// timestep * freq | |
int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2], | |
src->ne[3]}; | |
size_t tmp_mul_nb[GGML_MAX_DIMS]; | |
tmp_mul_nb[0] = ggml_type_size(src->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1]; | |
} | |
int mul_nelements = | |
src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3]; | |
ggml_cann_pool_alloc mul_allocator( | |
ctx.pool(), mul_nelements * ggml_type_size(src->type)); | |
void* tmp_mul_buffer = mul_allocator.get(); | |
aclTensor* tmp_mul_tensor = ggml_cann_create_tensor( | |
tmp_mul_buffer, ggml_cann_type_mapping(src->type), | |
ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, | |
ACL_FORMAT_ND); | |
aclnn_mul(ctx, tmp_permute_tenosr, tmp_arange_tensor, tmp_mul_tensor); | |
// cos | |
ggml_cann_pool_alloc cos_allocator( | |
ctx.pool(), mul_nelements * ggml_type_size(src->type)); | |
void* tmp_cos_buffer = cos_allocator.get(); | |
aclTensor* tmp_cos_tensor = ggml_cann_create_tensor( | |
tmp_cos_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, | |
ACL_FORMAT_ND); | |
aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor); | |
// sin | |
ggml_cann_pool_alloc sin_allocator( | |
ctx.pool(), mul_nelements * ggml_type_size(src->type)); | |
void* tmp_sin_buffer = sin_allocator.get(); | |
aclTensor* tmp_sin_tensor = ggml_cann_create_tensor( | |
tmp_sin_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS, | |
ACL_FORMAT_ND); | |
aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor); | |
// concat | |
int64_t concat_dim = 3; | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor}; | |
aclTensorList* tensorList = aclCreateTensorList(tensors, 2); | |
aclnn_concat(ctx, tensorList, acl_dst, concat_dim); | |
// release | |
// segmentation fault when delete both tensorList and his elements. | |
ACL_CHECK(aclDestroyTensorList(tensorList)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_permute_tenosr)); | |
ACL_CHECK(aclDestroyTensor(tmp_mul_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Fills a tensor with a scalar value. | |
* | |
* This function fills the destination tensor `acl_dst` with the scalar value | |
* `scalar`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param scalar The scalar value used to fill the tensor. | |
* @param acl_dst The destination tensor to be filled with the scalar value. | |
*/ | |
static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar, | |
aclTensor* acl_dst) { | |
auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceFillScalarGetWorkspaceSize( | |
acl_dst, acl_scalar, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceFillScalar(workspaceAddr, workspaceSize, executor, | |
ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(acl_scalar)); | |
} | |
/** | |
* @brief Raises each element of a tensor to the power of the corresponding | |
* element in another tensor. | |
* | |
* This function computes the element-wise power of the destination tensor | |
* `acl_dst` raised to the power of the exponent tensor `acl_exp`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_dst The destination tensor, which also serves as the base tensor. | |
* @param acl_exp The exponent tensor, each element of which is used to raise | |
* the corresponding element in the destination tensor. | |
*/ | |
static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx, | |
aclTensor* acl_dst, aclTensor* acl_exp) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplacePowTensorTensorGetWorkspaceSize( | |
acl_dst, acl_exp, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplacePowTensorTensor(workspaceAddr, workspaceSize, | |
executor, ctx.stream())); | |
} | |
/** | |
* @brief Applies the Alibi (Attention with Linear Biases) mechanism to the | |
* @details This function implements the Alibi mechanism, which introduces | |
* learnable biases into the attention scores to simulate relative | |
* position encoding without the need for explicit positional | |
* embeddings. | |
* | |
* @param ctx The backend CANN context for executing operations. | |
* @param acl_src The source tensor representing the query or key. | |
* @param acl_position The position tensor containing relative positions. | |
* @param acl_dst The destination tensor where the result will be stored. | |
* @param n_head The number of attention heads. | |
* @param src_ne The dimensions of the source tensor. | |
* @param src_nb0 The byte size of the first dimension of the source | |
tensor. | |
* @param max_bias The maximum bias value used in the Alibi mechanism. | |
* @param dst The destination tensor object for additional metadata. | |
* | |
* The function performs the following steps: | |
* 1. Calculates the logarithm floor of the number of heads to determine the | |
base for bias calculation. | |
* 2. Initializes arrays with arithmetic sequences and fills them with bias | |
values. | |
* 3. Computes the bias tensor based on the calculated biases and arithmetic | |
sequences. | |
* 4. Reshapes the bias tensor to match the dimensions of the input tensors. | |
* 5. Multiplies the position tensor by the bias tensor. | |
* 6. Adds the result of the multiplication to the source tensor to produce the | |
final output. | |
*/ | |
static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_position, aclTensor* acl_dst, | |
const int n_head, int64_t* src_ne, const size_t src_nb0, | |
float max_bias, ggml_tensor* dst) { | |
const int64_t ne2_ne3 = src_ne[2] * src_ne[3]; | |
GGML_ASSERT(src_nb0 == sizeof(float)); | |
GGML_ASSERT(n_head == src_ne[2]); | |
const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head)); | |
float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); | |
float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); | |
// init arange | |
ggml_cann_pool_alloc arange_allocator(ctx.pool(), | |
ne2_ne3 * ggml_type_size(dst->type)); | |
void* tmp_arange_buffer = arange_allocator.get(); | |
// arange1: [1, ..., n_heads_log2_floor+1) | |
float start = 1; | |
float stop = n_heads_log2_floor + 1; | |
float step = 1; | |
int64_t n_elements_arange = n_heads_log2_floor; | |
int64_t tmp_arange1_ne[] = {n_heads_log2_floor}; | |
size_t tmp_arange1_nb[] = {sizeof(dst->type)}; | |
aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor( | |
tmp_arange_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb, | |
GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange); | |
aclTensor* tmp_arange2_tensor = nullptr; | |
if (n_heads_log2_floor < ne2_ne3) { | |
// arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1) | |
start = 1; | |
stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1; | |
step = 2; | |
n_elements_arange = ne2_ne3 - n_heads_log2_floor; | |
int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor}; | |
size_t tmp_arange2_nb[] = {sizeof(dst->type)}; | |
aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor( | |
(char*)tmp_arange_buffer + | |
n_heads_log2_floor * ggml_type_size(dst->type), | |
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), | |
tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step, | |
n_elements_arange); | |
} | |
// init mk_base | |
ggml_cann_pool_alloc mk_base_allocator(ctx.pool(), | |
ne2_ne3 * ggml_type_size(dst->type)); | |
void* tmp_mk_base_buffer = mk_base_allocator.get(); | |
int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor}; | |
size_t tmp_mk_base1_nb[] = {sizeof(dst->type)}; | |
aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor( | |
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb, | |
GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor); | |
aclTensor* tmp_mk_base2_tensor = nullptr; | |
if (n_heads_log2_floor < ne2_ne3) { | |
int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor}; | |
size_t tmp_mk_base2_nb[] = {sizeof(dst->type)}; | |
aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor( | |
(char*)tmp_mk_base_buffer + | |
n_heads_log2_floor * ggml_type_size(dst->type), | |
ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type), | |
tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor); | |
} | |
// init mk | |
int64_t tmp_mk_base_ne[] = {ne2_ne3}; | |
size_t tmp_mk_base_nb[] = {sizeof(dst->type)}; | |
aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor( | |
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb, | |
GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclTensor* tmp_arange_tensor = ggml_cann_create_tensor( | |
tmp_arange_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb, | |
GGML_MAX_DIMS - 3, ACL_FORMAT_ND); | |
aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor); | |
// reshape mk | |
int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]}; | |
size_t tmp_mk_nb[GGML_MAX_DIMS]; | |
tmp_mk_nb[0] = ggml_type_size(dst->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1]; | |
} | |
aclTensor* tmp_mk_tensor = ggml_cann_create_tensor( | |
tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS, | |
ACL_FORMAT_ND); | |
// acl_position * mk | |
int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]}; | |
size_t tmp_output_nb[GGML_MAX_DIMS]; | |
tmp_output_nb[0] = ggml_type_size(dst->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1]; | |
} | |
ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst)); | |
void* tmp_output_buffer = output_allocator.get(); | |
aclTensor* tmp_output_tensor = ggml_cann_create_tensor( | |
tmp_output_buffer, ggml_cann_type_mapping(dst->type), | |
ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS, | |
ACL_FORMAT_ND); | |
aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor); | |
// add | |
aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst); | |
ACL_CHECK(aclDestroyTensor(tmp_arange1_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_arange2_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_mk_base1_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_mk_base2_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_mk_base_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_arange_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_mk_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_output_tensor)); | |
} | |
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_cann_dup(ctx, dst); | |
} | |
/** | |
* @brief Performs element-wise addition of two tensors in place. | |
* | |
* This function adds the source tensor `acl_src` to the destination tensor | |
* `acl_dst` element-wise and stores the result in the destination tensor | |
* `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor to be added. | |
* @param acl_dst The destination tensor which will hold the result of the | |
* addition. | |
*/ | |
static void aclnn_inplace_add(ggml_backend_cann_context& ctx, | |
aclTensor* acl_src, aclTensor* acl_dst) { | |
aclScalar* alpha = nullptr; | |
float alphaValue = 1.0f; | |
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src, alpha, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyScalar(alpha)); | |
} | |
/** | |
* @brief Applies the softmax function to a tensor along a specified dimension. | |
* | |
* This function computes the softmax of the source tensor `acl_src` along the | |
* specified dimension `dim` and stores the result in the destination tensor | |
* `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor on which the softmax function will be | |
* applied. | |
* @param dim The dimension along which the softmax function will be computed. | |
* @param acl_dst The destination tensor where the softmax results will be | |
* stored. | |
*/ | |
static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
int64_t dim, aclTensor* acl_dst) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnSoftmaxGetWorkspaceSize(acl_src, dim, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
aclrtStream stream = ctx.stream(); | |
ACL_CHECK(aclnnSoftmax(workspaceAddr, workspaceSize, executor, stream)); | |
} | |
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; // mask | |
aclTensor* acl_src0 = ggml_cann_create_tensor(src0); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
float scale = 1.0f; | |
float max_bias = 0.0f; | |
memcpy(&scale, (float*)dst->op_params + 0, sizeof(float)); | |
memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float)); | |
// input mul scale | |
aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT); | |
size_t n_bytes = ggml_nbytes(src0); | |
ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes); | |
void* input_mul_scale_buffer = mul_scale_allocator.get(); | |
aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor( | |
input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne, | |
src0->nb, GGML_MAX_DIMS); | |
bool inplace = false; | |
aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace); | |
// mask | |
aclTensor* acl_src1_fp32_tensor = nullptr; | |
aclTensor* tmp_mask_tensor = nullptr; | |
ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool()); | |
if (src1) { | |
const bool use_f16 = src1->type == GGML_TYPE_F16; | |
if (use_f16) { | |
// cast to fp32 | |
size_t n_bytes = ggml_nelements(src1) * sizeof(float_t); | |
size_t src1_fp32_nb[GGML_MAX_DIMS]; | |
src1_fp32_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1]; | |
} | |
src1_fp32_allocator.alloc(n_bytes); | |
void* src1_fp32_buffer = src1_fp32_allocator.get(); | |
acl_src1_fp32_tensor = ggml_cann_create_tensor( | |
src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne, | |
src1_fp32_nb, GGML_MAX_DIMS); | |
aclTensor* acl_src1 = ggml_cann_create_tensor(src1); | |
aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT); | |
ACL_CHECK(aclDestroyTensor(acl_src1)); | |
} else { | |
acl_src1_fp32_tensor = ggml_cann_create_tensor(src1); | |
} | |
// broadcast the mask across rows, only use ne11 of ne01 in mask | |
if (src1->ne[1] != src0->ne[1]) { | |
// mask shape: [1,1,ne11,ne10] | |
int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1}; | |
size_t tmp_mask_nb[GGML_MAX_DIMS]; | |
tmp_mask_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1]; | |
} | |
tmp_mask_tensor = ggml_cann_create_tensor( | |
src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_ND); | |
} | |
// alibi | |
const int n_head = src0->ne[2]; | |
const size_t src_nb0 = src0->nb[0]; | |
n_bytes = ggml_nbytes(dst); | |
ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes); | |
void* output_buffer = output_allocator.get(); | |
aclTensor* alibi_output_tensor = ggml_cann_create_tensor( | |
output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne, | |
dst->nb, GGML_MAX_DIMS); | |
if (max_bias <= 0.0f) { | |
// slope = 1.0 | |
if (tmp_mask_tensor) { | |
aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor, | |
alibi_output_tensor); | |
} else { | |
aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor, | |
alibi_output_tensor); | |
} | |
} else { | |
// slope != 1.0 | |
if (tmp_mask_tensor) { | |
aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor, | |
alibi_output_tensor, n_head, src0->ne, src_nb0, | |
max_bias, dst); | |
} else { | |
aclnn_alibi(ctx, acl_input_mul_scale_tensor, | |
acl_src1_fp32_tensor, alibi_output_tensor, n_head, | |
src0->ne, src_nb0, max_bias, dst); | |
} | |
} | |
// softmax | |
aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst); | |
ACL_CHECK(aclDestroyTensor(alibi_output_tensor)); | |
} else { | |
aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst); | |
} | |
ACL_CHECK(aclDestroyTensor(acl_src0)); | |
ACL_CHECK(aclDestroyTensor(acl_src1_fp32_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
ACL_CHECK(aclDestroyScalar(acl_scale)); | |
ACL_CHECK(aclDestroyTensor(acl_input_mul_scale_tensor)); | |
ACL_CHECK(aclDestroyTensor(tmp_mask_tensor)); | |
} | |
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
ggml_tensor* src0 = dst->src[0]; | |
ggml_tensor* src1 = dst->src[1]; | |
ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); | |
ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); | |
ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor)); | |
src0->extra = src0_extra_allocator.get(); | |
src1->extra = src1_extra_allocator.get(); | |
dst->extra = dst_extra_allocator.get(); | |
ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0, | |
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, | |
ctx.stream())); | |
ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1, | |
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, | |
ctx.stream())); | |
ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst, | |
sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE, | |
ctx.stream())); | |
switch (src0->type) { | |
case GGML_TYPE_F32: { | |
// Special operation for get_row_f32 kernel of 310P: clear the | |
// content of dest data buffer when row is not aligned to 32 bytes | |
if ((src0->ne[0] % 8) != 0) { | |
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] * | |
src0->ne[0] * ggml_type_size(GGML_TYPE_F32); | |
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len)); | |
} | |
aclrtlaunch_ascendc_get_row_f32( | |
24, ctx.stream(), src0->data, src1->data, dst->data, | |
((ggml_tensor*)src0->extra)->ne, | |
((ggml_tensor*)src0->extra)->nb, | |
((ggml_tensor*)src1->extra)->ne, | |
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
break; | |
} | |
case GGML_TYPE_F16: { | |
// Special operation for get_row_f16 kernel of 310P: clear the | |
// content of dest data buffer when row is not aligned to 32 bytes | |
if ((src0->ne[0] % 16) != 0) { | |
size_t dst_len = | |
src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] * | |
ggml_type_size( | |
GGML_TYPE_F32); // out is also f32, even input is f16 | |
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len)); | |
} | |
aclrtlaunch_ascendc_get_row_f16( | |
24, ctx.stream(), src0->data, src1->data, dst->data, | |
((ggml_tensor*)src0->extra)->ne, | |
((ggml_tensor*)src0->extra)->nb, | |
((ggml_tensor*)src1->extra)->ne, | |
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
break; | |
} | |
case GGML_TYPE_Q4_0: | |
aclrtlaunch_ascendc_get_row_q4_0( | |
24, ctx.stream(), src0->data, src1->data, dst->data, | |
((ggml_tensor*)src0->extra)->ne, | |
((ggml_tensor*)src1->extra)->ne, | |
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
break; | |
case GGML_TYPE_Q8_0: | |
aclrtlaunch_ascendc_get_row_q8_0( | |
24, ctx.stream(), src0->data, src1->data, dst->data, | |
((ggml_tensor*)src0->extra)->ne, | |
((ggml_tensor*)src1->extra)->ne, | |
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne, | |
((ggml_tensor*)dst->extra)->nb); | |
break; | |
default: | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
/** | |
* @brief Repeats elements of a tensor along a specified dimension. | |
* | |
* This function repeats each element of the source tensor `acl_src` a specified | |
* number of times (`repeats`) along the specified dimension `dim` and stores | |
* the result in the destination tensor `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor whose elements will be repeated. | |
* @param acl_dst The destination tensor where the repeated elements will be | |
* stored. | |
* @param dim The dimension along which the elements will be repeated. | |
* @param repeats The number of times each element will be repeated. | |
* @param output_size The size of the output tensor. | |
*/ | |
static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx, | |
aclTensor* acl_src, aclTensor* acl_dst, | |
int64_t dim, int64_t repeats, | |
int64_t output_size) { | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnRepeatInterleaveIntWithDimGetWorkspaceSize( | |
acl_src, repeats, dim, output_size, acl_dst, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnRepeatInterleaveIntWithDim(workspaceAddr, workspaceSize, | |
executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs matrix multiplication of two tensors. | |
* | |
* This function computes the matrix multiplication of the input tensor | |
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the | |
* destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst}=\text {acl_input@acl_weight} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_input The input tensor for the matrix multiplication. | |
* @param acl_weight The weight tensor for the matrix multiplication. | |
* @param acl_dst The destination tensor where the result of the matrix | |
* multiplication will be stored. | |
*/ | |
static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input, | |
aclTensor* acl_weight, aclTensor* acl_dst) { | |
int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is | |
// fp32, atlas a2 will transpose it to HFLOAT32. | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnMatmulGetWorkspaceSize(acl_input, acl_weight, acl_dst, | |
cube_math_type, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs matrix multiplication of two 2D tensors. | |
* | |
* This function computes the matrix multiplication of the input tensor | |
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the | |
* destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst}=\text {acl_input@acl_weight} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_input The input tensor for the matrix multiplication. | |
* @param acl_weight The weight tensor for the matrix multiplication. | |
* @param acl_dst The destination tensor where the result of the matrix | |
* multiplication will be stored. | |
*/ | |
static void aclnn_mat_mul_2d(ggml_backend_cann_context& ctx, | |
aclTensor* acl_input, aclTensor* acl_weight, | |
aclTensor* acl_dst) { | |
int8_t cube_math_type = 2; | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnMmGetWorkspaceSize(acl_input, acl_weight, acl_dst, | |
cube_math_type, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnMm(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs matrix multiplication of two 3D tensors. | |
* | |
* This function computes the matrix multiplication of the input tensor | |
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the | |
* destination tensor `acl_dst`. | |
* The operation is defined as: | |
* \f[ | |
* \text {acl_dst}=\text {acl_input@acl_weight} | |
* \f] | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_input The input tensor for the matrix multiplication. | |
* @param acl_weight The weight tensor for the matrix multiplication. | |
* @param acl_dst The destination tensor where the result of the matrix | |
* multiplication will be stored. | |
*/ | |
static void aclnn_mat_mul_3d(ggml_backend_cann_context& ctx, | |
aclTensor* acl_input, aclTensor* acl_weight, | |
aclTensor* acl_dst) { | |
int8_t cube_math_type = 2; | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnBatchMatMulGetWorkspaceSize(acl_input, acl_weight, acl_dst, | |
cube_math_type, &workspaceSize, | |
&executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK( | |
aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
} | |
/** | |
* @brief Performs matrix multiplication with floating-point precision on | |
* tensors using the CANN backend. | |
* | |
* This function performs matrix multiplication of the input tensor and the | |
* weight tensor, handling broadcasting and transposing as needed, and stores | |
* the result in the destination tensor `dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param dst The destination tensor where the result of the matrix | |
* multiplication will be stored. | |
*/ | |
static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst) { | |
ggml_tensor* weight = dst->src[0]; // weight | |
ggml_tensor* input = dst->src[1]; // input | |
// when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto | |
// broadcast, when weight ne2 or ne3 is not 1, weight need repeat. | |
BCAST_MUL_MAT_SHAPE(input, weight, dst); | |
int64_t n_dims = bcast_dims; | |
if (bcast_input_ne[3] == bcast_weight_ne[3] && bcast_input_ne[3] == 1) { | |
if (bcast_input_ne[2] == 1 && bcast_weight_ne[2] == 1) { | |
n_dims = 2; | |
} else if (bcast_input_ne[2] == 1) { | |
n_dims = 3; | |
} | |
} | |
aclTensor* acl_input_tensor = | |
ggml_cann_create_tensor(input, bcast_input_ne, bcast_input_nb, n_dims); | |
int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0], | |
bcast_weight_ne[2], bcast_weight_ne[3], | |
bcast_weight_ne[4], bcast_weight_ne[5]}; | |
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0], | |
bcast_weight_nb[2], bcast_weight_nb[3], | |
bcast_weight_nb[4], bcast_weight_nb[5]}; | |
aclTensor* acl_weight_tensor = | |
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims); | |
aclTensor* acl_dst = | |
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims); | |
switch (n_dims) { | |
case 2: | |
aclnn_mat_mul_2d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst); | |
break; | |
case 3: | |
aclnn_mat_mul_3d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst); | |
break; | |
default: | |
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst); | |
break; | |
} | |
ACL_CHECK(aclDestroyTensor(acl_weight_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_input_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |
/** | |
* @brief Performs matrix multiplication with quantized weights and | |
* floating-point inputs using the CANN backend. | |
* | |
* This function performs matrix multiplication of the input tensor `src1` and | |
* the weight tensor `src0`, handling broadcasting, transposing, and | |
* quantization as needed, and stores the result in the destination tensor | |
* `dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param dst The destination tensor where the result of the matrix | |
* multiplication will be stored. | |
*/ | |
static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx, | |
ggml_tensor* dst, | |
const enum ggml_type type) { | |
ggml_tensor* src0 = dst->src[0]; // weight | |
ggml_tensor* src1 = dst->src[1]; // input | |
// The shape of the weight is NCHW. | |
// Matrix multiplication uses HW dims. | |
// HC is regarded as batch. | |
// weight need transpose. | |
float weight_elem_size; | |
if (type == GGML_TYPE_Q4_0) { | |
weight_elem_size = float(sizeof(uint8_t)) / 2; | |
} else if (type == GGML_TYPE_Q8_0) { | |
weight_elem_size = float(sizeof(uint8_t)); | |
} else { | |
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT"); | |
} | |
float weight_nb[] = {src0->ne[0] * weight_elem_size, weight_elem_size}; | |
size_t weight_stride = src0->ne[1] * src0->ne[0] * weight_elem_size; | |
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3]; | |
// scale stored at the end of weight. Also need transpose. | |
size_t scale_elem_size = sizeof(uint16_t); | |
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size, | |
scale_elem_size}; | |
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size; | |
char* scale_offset = (char*)src0->data + weight_size; | |
// input | |
size_t input_elem_size = sizeof(uint16_t); | |
int64_t input_ne[] = {src1->ne[0], src1->ne[1]}; | |
size_t input_nb[] = {input_elem_size, input_ne[0] * input_elem_size}; | |
size_t input_stride = input_ne[0] * input_ne[1] * input_elem_size; | |
ggml_cann_pool_alloc input_alloctor(ctx.pool()); | |
void* input_buffer = src1->data; | |
// case in | |
if (src1->type != GGML_TYPE_F16) { | |
aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1); | |
input_buffer = | |
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size); | |
int64_t* input_cast_ne = src1->ne; | |
size_t input_cast_nb[GGML_MAX_DIMS]; | |
input_cast_nb[0] = sizeof(uint16_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1]; | |
} | |
aclTensor* acl_input_tensor = ggml_cann_create_tensor( | |
input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne, | |
input_cast_nb, GGML_MAX_DIMS); | |
aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16); | |
ACL_CHECK(aclDestroyTensor(acl_input_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_src1_tensor)); | |
} | |
// output | |
size_t output_elem_size = sizeof(uint16_t); | |
size_t output_nb[] = {output_elem_size, dst->ne[0] * output_elem_size}; | |
ggml_cann_pool_alloc output_allocator(ctx.pool()); | |
void* output_buffer = | |
output_allocator.alloc(ggml_nelements(dst) * output_elem_size); | |
size_t output_stride = dst->ne[0] * dst->ne[1] * output_elem_size; | |
// aclnn | |
int64_t max_elem_size = 65535; | |
int64_t split_size = (src0->ne[1] / max_elem_size) + 1; | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool()); | |
aclOpExecutor* executor = nullptr; | |
uint64_t workspaceSize = 0; | |
void* workspaceAddr = nullptr; | |
for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) { | |
for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) { | |
int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]); | |
int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]); | |
int64_t batch1 = (n1 * src1->ne[2]) + c1; | |
int64_t batch0 = (n0 * src0->ne[2]) + c0; | |
aclTensor* acl_input_tensor = ggml_cann_create_tensor( | |
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16, | |
input_elem_size, input_ne, input_nb, 2); | |
// first split | |
int64_t weight_ne_offset = 0; | |
int64_t weight_ne[2] = { | |
max_elem_size > src0->ne[1] ? src0->ne[1] : max_elem_size, | |
src0->ne[0]}; | |
int64_t scale_ne_offset = 0; | |
int64_t scale_ne[2] = {weight_ne[0], weight_ne[1] / QK8_0}; | |
int64_t output_ne_offset = 0; | |
int64_t output_ne[2] = {weight_ne[0], dst->ne[1]}; | |
aclTensor* acl_weight_tensor = ggml_cann_create_tensor( | |
(char*)src0->data + batch0 * weight_stride, | |
ggml_cann_type_mapping(type), weight_elem_size, weight_ne, | |
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset); | |
aclTensor* acl_scale_tensor = ggml_cann_create_tensor( | |
scale_offset + batch0 * scale_stride, ACL_FLOAT16, | |
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND, | |
scale_ne_offset); | |
aclTensor* acl_output_tensor = ggml_cann_create_tensor( | |
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16, | |
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND, | |
output_ne_offset); | |
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize( | |
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr, | |
nullptr, nullptr, nullptr, QK8_0, acl_output_tensor, | |
&workspaceSize, &executor)); | |
if (workspaceAddr == nullptr) { | |
workspaceAddr = workspace_allocator.alloc(workspaceSize); | |
} | |
ACL_CHECK(aclnnWeightQuantBatchMatmulV2( | |
workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_weight_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_scale_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_output_tensor)); | |
// other splits | |
for (int64_t split = 1; split < split_size; split++) { | |
weight_ne_offset += | |
weight_elem_size * weight_ne[0] * weight_ne[1]; | |
weight_ne[0] = max_elem_size * (split + 1) > src0->ne[1] | |
? src0->ne[1] - (max_elem_size * split) | |
: max_elem_size; | |
scale_ne_offset += scale_elem_size * scale_ne[0] * scale_ne[1]; | |
scale_ne[0] = weight_ne[0]; | |
output_ne_offset += | |
output_elem_size * output_ne[0] * output_ne[1]; | |
output_ne[0] = weight_ne[0]; | |
acl_weight_tensor = ggml_cann_create_tensor( | |
(char*)src0->data + batch0 * weight_stride, | |
ggml_cann_type_mapping(type), weight_elem_size, weight_ne, | |
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset); | |
acl_scale_tensor = ggml_cann_create_tensor( | |
scale_offset + batch0 * scale_stride, ACL_FLOAT16, | |
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND, | |
scale_ne_offset); | |
acl_output_tensor = ggml_cann_create_tensor( | |
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16, | |
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND, | |
output_ne_offset); | |
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize( | |
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, | |
nullptr, nullptr, nullptr, nullptr, QK8_0, | |
acl_output_tensor, &workspaceSize, &executor)); | |
ACL_CHECK(aclnnWeightQuantBatchMatmulV2( | |
workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_weight_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_scale_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_output_tensor)); | |
} | |
ACL_CHECK(aclDestroyTensor(acl_input_tensor)); | |
} | |
} | |
// cast out | |
if (dst->type != GGML_TYPE_F16) { | |
int64_t* output_cast_ne = dst->ne; | |
size_t output_cast_nb[GGML_MAX_DIMS]; | |
output_cast_nb[0] = sizeof(uint16_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1]; | |
} | |
aclTensor* acl_output_tensor = ggml_cann_create_tensor( | |
output_buffer, ACL_FLOAT16, output_elem_size, output_cast_ne, | |
output_cast_nb, GGML_MAX_DIMS); | |
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst); | |
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, | |
ggml_cann_type_mapping(dst->type)); | |
ACL_CHECK(aclDestroyTensor(acl_output_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst_tensor)); | |
} | |
} | |
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
const enum ggml_type type = dst->src[0]->type; | |
switch (type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
ggml_cann_mat_mul_fp(ctx, dst); | |
break; | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q8_0: | |
ggml_cann_mul_mat_quant(ctx, dst, type); | |
break; | |
default: | |
GGML_ABORT("fatal error"); | |
break; | |
} | |
} | |
/** | |
* @brief Rolls the elements of a tensor along a specified dimension. | |
* | |
* This function rolls the elements of the source tensor `acl_src` by the | |
* specified shifts `shifts` along the specified dimensions `dims`, and stores | |
* the result in the destination tensor `acl_dst`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor whose elements will be rolled. | |
* @param acl_dst The destination tensor where the rolled elements will be | |
* stored. | |
* @param shifts An array specifying the number of positions by which elements | |
* are shifted. | |
* @param dims An array specifying the dimensions along which elements are | |
* shifted. | |
*/ | |
static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src, | |
aclTensor* acl_dst, int64_t* shifts, int64_t* dims) { | |
aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1); | |
aclIntArray* acl_dims = aclCreateIntArray(dims, 1); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnRollGetWorkspaceSize(acl_src, acl_shifts, acl_dims, acl_dst, | |
&workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnRoll(workspaceAddr, workspaceSize, executor, ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(acl_shifts)); | |
ACL_CHECK(aclDestroyIntArray(acl_dims)); | |
} | |
/** | |
* @brief Fills specified positions of a tensor with a scalar value. | |
* | |
* This function fills the positions in the source tensor `acl_src` specified by | |
* `index` along the dimension `dim` with the scalar value `value`. | |
* | |
* @param ctx The context for the CANN backend operations. | |
* @param acl_src The source tensor where the positions will be filled. | |
* @param dim The dimension along which the positions are specified. | |
* @param index An array specifying the positions to be filled. | |
* @param index_num The number of positions specified in the index array. | |
* @param value The scalar value used to fill the specified positions. | |
*/ | |
static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx, | |
aclTensor* acl_src, int64_t dim, | |
int64_t* index, int64_t index_num, | |
float value) { | |
aclIntArray* acl_index = aclCreateIntArray(index, index_num); | |
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT); | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
ACL_CHECK(aclnnInplaceIndexFillTensorGetWorkspaceSize( | |
acl_src, dim, acl_index, acl_value, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnInplaceIndexFillTensor(workspaceAddr, workspaceSize, | |
executor, ctx.stream())); | |
ACL_CHECK(aclDestroyIntArray(acl_index)); | |
ACL_CHECK(aclDestroyScalar(acl_value)); | |
} | |
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst, | |
aclTensor* acl_cos_repeat_tensor, | |
aclTensor* acl_sin_repeat_tensor, | |
float theta_scale, float freq_scale, | |
float attn_factor, bool is_neox) { | |
// int sin/cos cache, cache has different repeat method depond on | |
// @param.is_neox | |
ggml_tensor* src0 = dst->src[0]; // input | |
ggml_tensor* src1 = dst->src[1]; // position | |
ggml_tensor* src2 = dst->src[2]; // freq_factors | |
// arange, [0,1,...,ne0/2] | |
int64_t arange_length = src0->ne[0] / 2; | |
ggml_cann_pool_alloc arange_allocator(ctx.pool(), | |
arange_length * sizeof(float_t)); | |
void* arange_buffer = arange_allocator.get(); | |
int64_t arange_ne[] = {arange_length, 1, 1, 1}; | |
size_t arange_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t), | |
arange_length * sizeof(float_t)}; | |
aclTensor* acl_arange_tensor = | |
ggml_cann_create_tensor(arange_buffer, ACL_FLOAT, sizeof(float_t), | |
arange_ne, arange_nb, GGML_MAX_DIMS); | |
float start = 0; | |
float step = 1; | |
float stop = src0->ne[0] / 2; | |
float n_elements = src0->ne[0] / 2; | |
aclnn_arange(ctx, acl_arange_tensor, start, stop, step, n_elements); | |
// power | |
// aclnnPowScalarTensor(): @param self is tensor which should be scalar, so | |
// use aclnn_pow_tensor_tensor() until fixed. aclScalar* acl_theta_scale = | |
// aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT); | |
// aclnn_power_scalar_tensor(ctx, acl_theta_scale, acl_arange_tensor, | |
// acl_power_tensor); | |
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(), | |
arange_length * sizeof(float_t)); | |
void* theta_scale_buffer = theta_scale_allocator.get(); | |
aclTensor* acl_theta_scale_tensor = aclnn_values( | |
ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne, | |
GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale); | |
aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor); | |
// freq_scale | |
if (freq_scale != 1) { | |
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true); | |
} | |
// freq_factors | |
if (src2) { | |
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor( | |
src2->data, ggml_cann_type_mapping(src2->type), | |
ggml_type_size(src2->type), arange_ne, arange_nb, GGML_MAX_DIMS); | |
aclnn_div_tensor(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor, | |
nullptr, true); | |
ACL_CHECK(aclDestroyTensor(acl_freq_factors_tensor)); | |
} | |
// position | |
GGML_ASSERT(src1->type == GGML_TYPE_I32); | |
int64_t position_length = src1->ne[0]; | |
int64_t position_ne[] = {1, position_length, 1, 1}; | |
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), | |
sizeof(int32_t) * position_length, | |
sizeof(int32_t) * position_length}; | |
aclTensor* acl_position_tensor = ggml_cann_create_tensor( | |
src1->data, ggml_cann_type_mapping(src1->type), | |
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS); | |
// power * position | |
int64_t theta_length = arange_length * position_length; | |
ggml_cann_pool_alloc theta_allocator(ctx.pool(), | |
theta_length * sizeof(float_t)); | |
void* theta_buffer = theta_allocator.get(); | |
int64_t theta_ne[] = {arange_length, position_length, 1, 1}; | |
size_t theta_nb[GGML_MAX_DIMS]; | |
theta_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1]; | |
} | |
aclTensor* acl_theta_tensor = | |
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t), | |
theta_ne, theta_nb, GGML_MAX_DIMS); | |
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor, | |
acl_theta_tensor); | |
// permute: [0,1,2,3]->[0,2,1,3] | |
int64_t permute_ne[] = {arange_length, 1, position_length, 1}; | |
size_t permute_nb[GGML_MAX_DIMS]; | |
permute_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
permute_nb[i] = permute_nb[i - 1] * permute_ne[i - 1]; | |
} | |
ggml_cann_pool_alloc permute_allocator(ctx.pool(), | |
theta_length * sizeof(float_t)); | |
void* permute_buffer = permute_allocator.get(); | |
aclTensor* acl_permute_tensor = ggml_cann_create_tensor( | |
permute_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_ND); | |
int64_t permute_dim[] = {0, 2, 1, 3}; | |
int64_t num_dims = 4; | |
aclnn_permute(ctx, acl_theta_tensor, acl_permute_tensor, permute_dim, | |
num_dims); | |
// sin/cos | |
ggml_cann_pool_alloc sin_allocator(ctx.pool(), | |
theta_length * sizeof(float_t)); | |
void* sin_buffer = sin_allocator.get(); | |
aclTensor* acl_sin_tensor = ggml_cann_create_tensor( | |
sin_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_ND); | |
aclnn_sin(ctx, acl_permute_tensor, acl_sin_tensor); | |
ggml_cann_pool_alloc cos_allocator(ctx.pool(), | |
theta_length * sizeof(float_t)); | |
void* cos_buffer = cos_allocator.get(); | |
aclTensor* acl_cos_tensor = ggml_cann_create_tensor( | |
cos_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb, | |
GGML_MAX_DIMS, ACL_FORMAT_ND); | |
aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor); | |
// attn_factor | |
if (attn_factor != 1) { | |
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true); | |
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true); | |
} | |
// repeat | |
if (is_neox) { | |
int64_t repeatsArray[] = {1, 1, 1, 2}; | |
aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray); | |
aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray); | |
} else { | |
int64_t num_repeats = 2; | |
int64_t dim = 3; | |
int64_t output_size = arange_length * num_repeats; | |
aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim, | |
num_repeats, output_size); | |
aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim, | |
num_repeats, output_size); | |
} | |
// release | |
ACL_CHECK(aclDestroyTensor(acl_arange_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_theta_scale_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_position_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_theta_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_permute_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_sin_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_cos_tensor)); | |
} | |
extern "C" { | |
aclnnStatus aclnnRotaryPositionEmbeddingGetWorkspaceSize( | |
const aclTensor* x, const aclTensor* cos, const aclTensor* sin, | |
int64_t mode, const aclTensor* yOut, uint64_t* workspaceSize, | |
aclOpExecutor** executor); | |
aclnnStatus aclnnRotaryPositionEmbedding(void* workspace, | |
uint64_t workspaceSize, | |
aclOpExecutor* executor, | |
aclrtStream stream); | |
} | |
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) { | |
// TODO: use ascendc | |
// Only test with LLAMA model. | |
ggml_tensor* src0 = dst->src[0]; // input | |
ggml_tensor* src2 = dst->src[2]; // freq_factors | |
// param | |
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; | |
// const int n_past = ((int32_t *) dst->op_params)[0]; | |
const int n_dims = ((int32_t*)dst->op_params)[1]; | |
const int mode = ((int32_t*)dst->op_params)[2]; | |
// const int n_ctx = ((int32_t *) dst->op_params)[3]; | |
const int n_ctx_orig = ((int32_t*)dst->op_params)[4]; | |
GGML_TENSOR_UNARY_OP_LOCALS | |
memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float)); | |
memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float)); | |
memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float)); | |
memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float)); | |
memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float)); | |
memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float)); | |
// TODO: n_dims <= ne0 | |
GGML_ASSERT(n_dims == ne0); | |
GGML_ASSERT(n_dims % 2 == 0); | |
// TODO: ext_factor != 0 | |
GGML_ASSERT(ext_factor == 0); | |
const float theta_scale = powf(freq_base, -2.0f / n_dims); | |
float corr_dims[2]; | |
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, | |
beta_slow, corr_dims); | |
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; | |
// init cos/sin cache | |
ggml_cann_pool_alloc sin_allocator( | |
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t)); | |
ggml_cann_pool_alloc cos_allocator( | |
ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t)); | |
void* sin_buffer = sin_allocator.get(); | |
void* cos_buffer = cos_allocator.get(); | |
int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; | |
size_t sin_reshape_nb[GGML_MAX_DIMS]; | |
sin_reshape_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1]; | |
} | |
aclTensor* acl_sin_reshape_tensor = | |
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t), | |
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); | |
aclTensor* acl_cos_reshape_tensor = | |
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t), | |
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS); | |
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor, | |
theta_scale, freq_scale, attn_factor, is_neox); | |
aclTensor* acl_src = ggml_cann_create_tensor(src0); | |
aclTensor* acl_dst = ggml_cann_create_tensor(dst); | |
// Special ROPE operation for 310P | |
// roll input | |
void* input_roll_buffer; | |
aclTensor* acl_minus_one_tensor; | |
void* minus_one_scale_buffer = nullptr; | |
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0)); | |
ggml_cann_pool_alloc minus_one_scale_allocator( | |
ctx.pool(), sizeof(float_t) * src0->ne[0]); | |
if (!is_neox) { | |
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...] | |
input_roll_buffer = roll_allocator.get(); | |
int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2), | |
src0->ne[2], src0->ne[3]}; | |
size_t input_roll_nb[GGML_MAX_DIMS]; | |
input_roll_nb[0] = ggml_type_size(src0->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1]; | |
} | |
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( | |
input_roll_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), input_roll_ne, input_roll_nb, | |
GGML_MAX_DIMS); | |
aclTensor* acl_input_tensor = ggml_cann_create_tensor( | |
src0->data, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), input_roll_ne, input_roll_nb, | |
GGML_MAX_DIMS); | |
int64_t shifts[] = {1}; | |
int64_t dims[] = {3}; | |
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); | |
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_input_tensor)); | |
// init [-1, 1, -1, 1, ...] | |
minus_one_scale_buffer = minus_one_scale_allocator.get(); | |
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; | |
size_t minus_one_nb[GGML_MAX_DIMS]; | |
minus_one_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; | |
} | |
acl_minus_one_tensor = aclnn_values( | |
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], | |
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); | |
int64_t dim = 3; | |
int64_t* index = new int64_t[src0->ne[0]]; | |
for (int i = 0; i < src0->ne[0]; i++) { | |
index[i] = i / 2 * 2; | |
} | |
int64_t index_num = src0->ne[0]; | |
float value = -1; | |
aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index, | |
index_num, value); | |
} else { | |
// roll input: [q0,q1,q2,...] -> | |
// [q_half,q_half+1,...,q_end,q0,q1,...q_half-1] | |
input_roll_buffer = roll_allocator.get(); | |
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor( | |
input_roll_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS); | |
aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0); | |
int64_t shifts[] = {src0->ne[0] / 2}; | |
int64_t dims[] = {3}; | |
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims); | |
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_input_tensor)); | |
// init [-1, -1, -1, 1, 1,1,...] | |
minus_one_scale_buffer = minus_one_scale_allocator.get(); | |
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1}; | |
size_t minus_one_nb[GGML_MAX_DIMS]; | |
minus_one_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1]; | |
} | |
acl_minus_one_tensor = aclnn_values( | |
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0], | |
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1); | |
// -1 * first half | |
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1}; | |
size_t first_half_nb[GGML_MAX_DIMS]; | |
first_half_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1]; | |
} | |
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor( | |
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne, | |
first_half_nb, GGML_MAX_DIMS); | |
bool inplace = true; | |
float scale = -1; | |
aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace); | |
ACL_CHECK(aclDestroyTensor(acl_first_half_tensor)); | |
} | |
// TODO: n_dims < ne0 | |
GGML_ASSERT(n_dims == src0->ne[0]); | |
// input * scale | |
ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(), | |
ggml_nbytes(src0)); | |
void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get(); | |
size_t input_nb[GGML_MAX_DIMS]; | |
input_nb[0] = ggml_type_size(src0->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
input_nb[i] = input_nb[i - 1] * src0->ne[i - 1]; | |
} | |
aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor( | |
input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); | |
aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor( | |
input_roll_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS); | |
aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor, | |
acl_input_roll_mul_scale_tensor); | |
// output | |
void* output_fp32_buffer; | |
if (src0->type == GGML_TYPE_F32) { | |
aclnn_inplace_mul(ctx, acl_src, acl_cos_reshape_tensor); | |
aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor, | |
acl_sin_reshape_tensor); | |
aclnn_add(ctx, acl_src, acl_input_roll_mul_scale_tensor, acl_dst); | |
// TODO: ne0 != n_dims in mode2 | |
} else if (src0->type == GGML_TYPE_F16) { | |
size_t input_fp32_nb[GGML_MAX_DIMS]; | |
input_fp32_nb[0] = sizeof(float_t); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1]; | |
} | |
ggml_cann_pool_alloc fp32_allocator1( | |
ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); | |
void* input_fp32_buffer1 = fp32_allocator1.get(); | |
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor( | |
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne, | |
input_fp32_nb, GGML_MAX_DIMS); | |
ggml_cann_pool_alloc fp32_allocator2( | |
ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); | |
void* input_fp32_buffer2 = fp32_allocator2.get(); | |
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor( | |
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne, | |
input_fp32_nb, GGML_MAX_DIMS); | |
ggml_cann_pool_alloc fp32_allocator( | |
ctx.pool(), ggml_nelements(dst) * sizeof(float_t)); | |
output_fp32_buffer = fp32_allocator.get(); | |
aclTensor* output_fp32_tensor = ggml_cann_create_tensor( | |
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne, | |
input_fp32_nb, GGML_MAX_DIMS); | |
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1); | |
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor, | |
input_fp32_tensor2); | |
aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2, | |
output_fp32_tensor); | |
aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16); | |
ACL_CHECK(aclDestroyTensor(input_fp32_tensor1)); | |
ACL_CHECK(aclDestroyTensor(input_fp32_tensor2)); | |
ACL_CHECK(aclDestroyTensor(output_fp32_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
} | |
return; | |
// src0 == GGML_TYPE_F16 | |
// TODO: optimization this `if` code | |
if (src0->type == GGML_TYPE_F16) { | |
ggml_cann_pool_alloc sin_final_allocator( | |
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type)); | |
ggml_cann_pool_alloc cos_final_allocator( | |
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type)); | |
void* sin_final_buffer = sin_final_allocator.get(); | |
void* cos_final_buffer = cos_final_allocator.get(); | |
int64_t sin_final_ne[4] = {src0->ne[0], 1, src0->ne[2], 1}; | |
size_t sin_final_nb[GGML_MAX_DIMS]; | |
sin_final_nb[0] = ggml_type_size(src0->type); | |
for (int i = 1; i < GGML_MAX_DIMS; i++) { | |
sin_final_nb[i] = sin_final_nb[i - 1] * sin_final_ne[i - 1]; | |
} | |
aclTensor* acl_sin_final_tensor = ggml_cann_create_tensor( | |
sin_final_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), sin_final_ne, sin_final_nb, | |
GGML_MAX_DIMS); | |
aclTensor* acl_cos_final_tensor = ggml_cann_create_tensor( | |
cos_final_buffer, ggml_cann_type_mapping(src0->type), | |
ggml_type_size(src0->type), sin_final_ne, sin_final_nb, | |
GGML_MAX_DIMS); | |
aclnn_cast(ctx, acl_sin_reshape_tensor, acl_sin_final_tensor, | |
ggml_cann_type_mapping(src0->type)); | |
aclnn_cast(ctx, acl_cos_reshape_tensor, acl_cos_final_tensor, | |
ggml_cann_type_mapping(src0->type)); | |
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor)); | |
acl_sin_reshape_tensor = acl_sin_final_tensor; | |
acl_cos_reshape_tensor = acl_cos_final_tensor; | |
} | |
uint64_t workspaceSize = 0; | |
aclOpExecutor* executor; | |
void* workspaceAddr = nullptr; | |
int acl_mode = mode; | |
if (mode == 0) { | |
acl_mode = 1; | |
} | |
ACL_CHECK(aclnnRotaryPositionEmbeddingGetWorkspaceSize( | |
acl_src, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode, | |
acl_dst, &workspaceSize, &executor)); | |
if (workspaceSize > 0) { | |
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize); | |
workspaceAddr = workspace_allocator.get(); | |
} | |
ACL_CHECK(aclnnRotaryPositionEmbedding(workspaceAddr, workspaceSize, | |
executor, ctx.stream())); | |
ACL_CHECK(aclDestroyTensor(acl_src)); | |
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor)); | |
ACL_CHECK(aclDestroyTensor(acl_dst)); | |
} | |