Spaces:
Build error
Build error
| /* | |
| * Copyright (c) 2023-2024 The ggml authors | |
| * | |
| * Permission is hereby granted, free of charge, to any person obtaining a copy | |
| * of this software and associated documentation files (the "Software"), to | |
| * deal in the Software without restriction, including without limitation the | |
| * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | |
| * sell copies of the Software, and to permit persons to whom the Software is | |
| * furnished to do so, subject to the following conditions: | |
| * | |
| * The above copyright notice and this permission notice shall be included in | |
| * all copies or substantial portions of the Software. | |
| * | |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | |
| * IN THE SOFTWARE. | |
| */ | |
| aclDataType ggml_cann_type_mapping(ggml_type type) { | |
| switch (type) { | |
| case GGML_TYPE_F32: | |
| return ACL_FLOAT; | |
| case GGML_TYPE_F16: | |
| return ACL_FLOAT16; | |
| case GGML_TYPE_I8: | |
| return ACL_INT8; | |
| case GGML_TYPE_I16: | |
| return ACL_INT16; | |
| case GGML_TYPE_I32: | |
| return ACL_INT32; | |
| case GGML_TYPE_Q4_0: | |
| return ACL_INT4; | |
| case GGML_TYPE_Q8_0: | |
| return ACL_INT8; | |
| default: | |
| return ACL_DT_UNDEFINED; | |
| } | |
| return ACL_DT_UNDEFINED; | |
| } | |
| aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne, | |
| size_t* nb, int64_t dims, aclFormat format, | |
| size_t offset) { | |
| // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be | |
| // added. | |
| int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2]; | |
| int64_t acl_storage_len = 0; | |
| if (ne == nullptr) { | |
| acl_storage_len = ggml_nbytes(tensor); | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| acl_ne[i] = tensor->ne[i]; | |
| // The step size of acl is in elements. | |
| acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor); | |
| } | |
| } else { | |
| // With bcast | |
| for (int i = 0; i < dims; i++) { | |
| acl_storage_len += (ne[i] - 1) * nb[i]; | |
| acl_ne[i] = ne[i]; | |
| acl_stride[i] = nb[i] / ggml_element_size(tensor); | |
| } | |
| } | |
| // Reverse ne and stride. | |
| int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims); | |
| std::reverse(acl_ne, acl_ne + final_dims); | |
| std::reverse(acl_stride, acl_stride + final_dims); | |
| aclTensor* acl_tensor = aclCreateTensor( | |
| acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride, | |
| offset / ggml_element_size(tensor), format, &acl_storage_len, 1, | |
| tensor->data); | |
| return acl_tensor; | |
| } | |
| bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) { | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, | |
| const ggml_tensor* src1, | |
| int64_t* bcast_src0_ne, | |
| int64_t* bcast_src1_ne, size_t* bcast_src0_nb, | |
| size_t* bcast_src1_nb) { | |
| GGML_ASSERT(ggml_can_repeat(src1, src0)); | |
| int bcast_dim_cnt = 0; | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| int64_t nr = src0->ne[i] / src1->ne[i]; | |
| bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr; | |
| bcast_src1_ne[bcast_dim_cnt] = src1->ne[i]; | |
| bcast_src0_nb[bcast_dim_cnt] = src0->nb[i]; | |
| bcast_src1_nb[bcast_dim_cnt] = src1->nb[i]; | |
| bcast_dim_cnt++; | |
| if (nr != 1) { | |
| // Need to add an extra dim. | |
| bcast_src0_ne[bcast_dim_cnt] = nr; | |
| bcast_src1_ne[bcast_dim_cnt] = 1; | |
| bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * | |
| bcast_src0_ne[bcast_dim_cnt - 1]; | |
| bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * | |
| bcast_src1_ne[bcast_dim_cnt - 1]; | |
| bcast_dim_cnt++; | |
| } | |
| } | |
| return bcast_dim_cnt; | |
| } | |
| int64_t ggml_cann_get_mulmat_bcast_shape( | |
| const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne, | |
| const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb, | |
| int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne, | |
| size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) { | |
| // input and dst shoule in same shape, except first two dims. | |
| GGML_ASSERT(input_ne[2] == dst_ne[2]); | |
| GGML_ASSERT(input_ne[3] == dst_ne[3]); | |
| int bcast_dim_cnt = 0; | |
| // For mul_mat, a dimension needs to be added before the dimension that | |
| // weight needs to be expanded to satisfy the bcast rule of matrix | |
| // multiplication. | |
| for (int i = 0; i < GGML_MAX_DIMS; i++) { | |
| int64_t nr = input_ne[i] / weight_ne[i]; | |
| // Do not use bcast in the first two dimensions because we only support | |
| // the bcast batch dimension. Just copy them. | |
| if (i < 2 || nr == 1) { | |
| bcast_input_ne[bcast_dim_cnt] = input_ne[i]; | |
| bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; | |
| bcast_dst_ne[bcast_dim_cnt] = dst_ne[i]; | |
| bcast_input_nb[bcast_dim_cnt] = input_nb[i]; | |
| bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; | |
| bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; | |
| bcast_dim_cnt++; | |
| } else { | |
| // Need to add an extra dim. | |
| bcast_input_ne[bcast_dim_cnt] = nr; | |
| bcast_dst_ne[bcast_dim_cnt] = nr; | |
| bcast_weight_ne[bcast_dim_cnt] = 1; | |
| bcast_input_nb[bcast_dim_cnt] = input_nb[i]; | |
| bcast_dst_nb[bcast_dim_cnt] = dst_nb[i]; | |
| bcast_weight_nb[bcast_dim_cnt] = weight_nb[i]; | |
| bcast_dim_cnt++; | |
| bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr; | |
| bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr; | |
| bcast_weight_ne[bcast_dim_cnt] = weight_ne[i]; | |
| bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * | |
| bcast_input_ne[bcast_dim_cnt - 1]; | |
| bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * | |
| bcast_dst_ne[bcast_dim_cnt - 1]; | |
| bcast_weight_nb[bcast_dim_cnt] = | |
| bcast_weight_nb[bcast_dim_cnt - 1] * | |
| bcast_weight_ne[bcast_dim_cnt - 1]; | |
| bcast_dim_cnt++; | |
| } | |
| } | |
| return bcast_dim_cnt; | |
| } | |