Spaces:
Build error
Build error
int main(int argc, char ** argv) { | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { | |
return 1; | |
} | |
if (params.n_predict < -1) { | |
LOG_ERR("%s: --n-predict must be >= -1\n", __func__); | |
return 1; | |
} | |
common_init(); | |
if (params.speculative.model.empty()) { | |
LOG_ERR("%s: --model-draft is required\n", __func__); | |
return 1; | |
} | |
// init llama.cpp | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model_tgt = NULL; | |
//llama_model * model_dft = NULL; | |
llama_context * ctx_tgt = NULL; | |
llama_context * ctx_dft = NULL; | |
// load the target model | |
common_init_result llama_init_tgt = common_init_from_params(params); | |
model_tgt = llama_init_tgt.model.get(); | |
ctx_tgt = llama_init_tgt.context.get(); | |
const llama_vocab * vocab = llama_model_get_vocab(model_tgt); | |
// load the draft model | |
params.devices = params.speculative.devices; | |
params.model = params.speculative.model; | |
params.n_ctx = params.speculative.n_ctx; | |
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch; | |
params.n_gpu_layers = params.speculative.n_gpu_layers; | |
if (params.speculative.cpuparams.n_threads > 0) { | |
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads; | |
} | |
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads; | |
common_init_result llama_init_dft = common_init_from_params(params); | |
//model_dft = llama_init_dft.model.get(); | |
ctx_dft = llama_init_dft.context.get(); | |
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) { | |
return 1; | |
} | |
// Tokenize the prompt | |
std::vector<llama_token> inp; | |
inp = common_tokenize(ctx_tgt, params.prompt, true, true); | |
if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) { | |
LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt)); | |
return 1; | |
} | |
if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) { | |
LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt)); | |
return 1; | |
} | |
LOG("\n\n"); | |
for (auto id : inp) { | |
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); | |
} | |
// how many tokens to draft each time | |
int n_draft = params.speculative.n_max; | |
int n_draft_min = params.speculative.n_min; | |
float p_min = params.speculative.p_min; | |
int n_predict = 0; | |
int n_drafted = 0; | |
int n_accept = 0; | |
// used to determine end of generation | |
bool has_eos = false; | |
// ================================================ | |
// everything until here is standard initialization | |
// the relevant stuff for speculative decoding starts here | |
const auto t_enc_start = ggml_time_us(); | |
// target model sampling context | |
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling); | |
// eval the prompt | |
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1)); | |
// note: keep the last token separate! | |
llama_token id_last = inp.back(); | |
// all tokens currently in the target context | |
llama_tokens prompt_tgt(inp.begin(), inp.end() - 1); | |
prompt_tgt.reserve(llama_n_ctx(ctx_tgt)); | |
int n_past = inp.size() - 1; | |
// init the speculator | |
struct common_speculative_params params_spec; | |
params_spec.n_draft = n_draft; | |
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft; | |
params_spec.p_min = p_min; | |
struct common_speculative * spec = common_speculative_init(ctx_dft); | |
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1); | |
const auto t_enc_end = ggml_time_us(); | |
const auto t_dec_start = ggml_time_us(); | |
while (true) { | |
// optionally, generate draft tokens that can be appended to the target batch | |
// | |
// this is the most important part of the speculation. the more probable tokens that are provided here | |
// the better the performance will be. in theory, this computation can be performed asynchronously and even | |
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens | |
// from a cache or lookup tables. | |
// | |
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last); | |
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str()); | |
// always have a token to evaluate from before - id_last | |
common_batch_clear(batch_tgt); | |
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true); | |
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1] | |
{ | |
// do not waste time on small drafts | |
if (draft.size() < (size_t) n_draft_min) { | |
draft.clear(); | |
} | |
for (size_t i = 0; i < draft.size(); ++i) { | |
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true); | |
} | |
//LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str()); | |
llama_decode(ctx_tgt, batch_tgt); | |
} | |
// sample from the full target batch and return the accepted tokens based on the target sampler | |
// | |
// for each token to be accepted, the sampler would have to sample that same token | |
// in such cases, instead of decoding the sampled token as we normally do, we simply continue with the | |
// available logits from the batch and sample the next token until we run out of logits or the sampler | |
// disagrees with the draft | |
// | |
const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft); | |
//LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str()); | |
GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token | |
n_past += ids.size() - 1; | |
n_drafted += draft.size(); // note: we ignore the discarded small drafts | |
n_accept += ids.size() - 1; | |
n_predict += ids.size(); | |
// process the accepted tokens and update contexts | |
// | |
// this is the standard token post-processing that we normally do | |
// in this case, we do it for a group of accepted tokens at once | |
// | |
for (size_t i = 0; i < ids.size(); ++i) { | |
prompt_tgt.push_back(id_last); | |
id_last = ids[i]; | |
if (llama_vocab_is_eog(vocab, id_last)) { | |
has_eos = true; | |
break; | |
} | |
const std::string token_str = common_token_to_piece(ctx_tgt, id_last); | |
if (params.use_color && i + 1 < ids.size()) { | |
LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str()); | |
} else { | |
LOG("%s", token_str.c_str()); | |
} | |
} | |
LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last); | |
{ | |
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past); | |
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1); | |
} | |
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { | |
break; | |
} | |
} | |
auto t_dec_end = ggml_time_us(); | |
const int n_input = inp.size(); | |
LOG("\n\n"); | |
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); | |
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); | |
LOG_INF("\n"); | |
LOG_INF("n_draft = %d\n", n_draft); | |
LOG_INF("n_predict = %d\n", n_predict); | |
LOG_INF("n_drafted = %d\n", n_drafted); | |
LOG_INF("n_accept = %d\n", n_accept); | |
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); | |
LOG_INF("\n"); | |
LOG_INF("draft:\n\n"); | |
llama_perf_context_print(ctx_dft); | |
LOG_INF("\n"); | |
LOG_INF("target:\n\n"); | |
common_perf_print(ctx_tgt, smpl); | |
common_sampler_free(smpl); | |
common_speculative_free(spec); | |
llama_backend_free(); | |
LOG("\n\n"); | |
return 0; | |
} | |