Spaces:
Build error
Build error
from __future__ import annotations | |
import argparse | |
import json | |
import os | |
import re | |
import signal | |
import socket | |
import subprocess | |
import sys | |
import threading | |
import time | |
import traceback | |
from contextlib import closing | |
from datetime import datetime | |
import matplotlib | |
import matplotlib.dates | |
import matplotlib.pyplot as plt | |
import requests | |
from statistics import mean | |
def main(args_in: list[str] | None = None) -> None: | |
parser = argparse.ArgumentParser(description="Start server benchmark scenario") | |
parser.add_argument("--name", type=str, help="Bench name", required=True) | |
parser.add_argument("--runner-label", type=str, help="Runner label", required=True) | |
parser.add_argument("--branch", type=str, help="Branch name", default="detached") | |
parser.add_argument("--commit", type=str, help="Commit name", default="dirty") | |
parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0") | |
parser.add_argument("--port", type=int, help="Server listen host", default="8080") | |
parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models") | |
parser.add_argument("--n-prompts", type=int, | |
help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True) | |
parser.add_argument("--max-prompt-tokens", type=int, | |
help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset", | |
required=True) | |
parser.add_argument("--max-tokens", type=int, | |
help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens", | |
required=True) | |
parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True) | |
parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True) | |
parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True) | |
parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True) | |
parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True) | |
parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True) | |
parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True) | |
parser.add_argument("--scenario", type=str, help="Scenario to run", required=True) | |
parser.add_argument("--duration", type=str, help="Bench scenario", required=True) | |
args = parser.parse_args(args_in) | |
start_time = time.time() | |
# Start the server and performance scenario | |
try: | |
server_process = start_server(args) | |
except Exception: | |
print("bench: server start error :") | |
traceback.print_exc(file=sys.stdout) | |
sys.exit(1) | |
# start the benchmark | |
iterations = 0 | |
data = {} | |
try: | |
start_benchmark(args) | |
with open("results.github.env", 'w') as github_env: | |
# parse output | |
with open('k6-results.json', 'r') as bench_results: | |
# Load JSON data from file | |
data = json.load(bench_results) | |
for metric_name in data['metrics']: | |
for metric_metric in data['metrics'][metric_name]: | |
value = data['metrics'][metric_name][metric_metric] | |
if isinstance(value, float) or isinstance(value, int): | |
value = round(value, 2) | |
data['metrics'][metric_name][metric_metric]=value | |
github_env.write( | |
f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n") | |
iterations = data['root_group']['checks']['success completion']['passes'] | |
except Exception: | |
print("bench: error :") | |
traceback.print_exc(file=sys.stdout) | |
# Stop the server | |
if server_process: | |
try: | |
print(f"bench: shutting down server pid={server_process.pid} ...") | |
if os.name == 'nt': | |
interrupt = signal.CTRL_C_EVENT | |
else: | |
interrupt = signal.SIGINT | |
server_process.send_signal(interrupt) | |
server_process.wait(0.5) | |
except subprocess.TimeoutExpired: | |
print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...") | |
server_process.kill() # SIGKILL | |
server_process.wait() | |
while is_server_listening(args.host, args.port): | |
time.sleep(0.1) | |
title = (f"llama.cpp {args.name} on {args.runner_label}\n " | |
f"duration={args.duration} {iterations} iterations") | |
xlabel = (f"{args.hf_repo}/{args.hf_file}\n" | |
f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n" | |
f"branch={args.branch} commit={args.commit}") | |
# Prometheus | |
end_time = time.time() | |
prometheus_metrics = {} | |
if is_server_listening("0.0.0.0", 9090): | |
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds', | |
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred'] | |
for metric in metrics: | |
resp = requests.get(f"http://localhost:9090/api/v1/query_range", | |
params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2}) | |
with open(f"{metric}.json", 'w') as metric_json: | |
metric_json.write(resp.text) | |
if resp.status_code != 200: | |
print(f"bench: unable to extract prometheus metric {metric}: {resp.text}") | |
else: | |
metric_data = resp.json() | |
values = metric_data['data']['result'][0]['values'] | |
timestamps, metric_values = zip(*values) | |
metric_values = [float(value) for value in metric_values] | |
prometheus_metrics[metric] = metric_values | |
timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps] | |
plt.figure(figsize=(16, 10), dpi=80) | |
plt.plot(timestamps_dt, metric_values, label=metric) | |
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7) | |
plt.yticks(fontsize=12, alpha=.7) | |
ylabel = f"llamacpp:{metric}" | |
plt.title(title, | |
fontsize=14, wrap=True) | |
plt.grid(axis='both', alpha=.3) | |
plt.ylabel(ylabel, fontsize=22) | |
plt.xlabel(xlabel, fontsize=14, wrap=True) | |
plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator()) | |
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S")) | |
plt.gcf().autofmt_xdate() | |
# Remove borders | |
plt.gca().spines["top"].set_alpha(0.0) | |
plt.gca().spines["bottom"].set_alpha(0.3) | |
plt.gca().spines["right"].set_alpha(0.0) | |
plt.gca().spines["left"].set_alpha(0.3) | |
# Save the plot as a jpg image | |
plt.savefig(f'{metric}.jpg', dpi=60) | |
plt.close() | |
# Mermaid format in case images upload failed | |
with open(f"{metric}.mermaid", 'w') as mermaid_f: | |
mermaid = ( | |
f"""--- | |
config: | |
xyChart: | |
titleFontSize: 12 | |
width: 900 | |
height: 600 | |
themeVariables: | |
xyChart: | |
titleColor: "#000000" | |
--- | |
xychart-beta | |
title "{title}" | |
y-axis "llamacpp:{metric}" | |
x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))} | |
line [{', '.join([str(round(float(value), 2)) for value in metric_values])}] | |
""") | |
mermaid_f.write(mermaid) | |
# 140 chars max for commit status description | |
bench_results = { | |
"i": iterations, | |
"req": { | |
"p95": round(data['metrics']["http_req_duration"]["p(95)"], 2), | |
"avg": round(data['metrics']["http_req_duration"]["avg"], 2), | |
}, | |
"pp": { | |
"p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2), | |
"avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2), | |
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2) if 'prompt_tokens_seconds' in prometheus_metrics else 0, | |
}, | |
"tg": { | |
"p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2), | |
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2), | |
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2) if 'predicted_tokens_seconds' in prometheus_metrics else 0, | |
}, | |
} | |
with open("results.github.env", 'a') as github_env: | |
github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n") | |
github_env.write(f"BENCH_ITERATIONS={iterations}\n") | |
title = title.replace('\n', ' ') | |
xlabel = xlabel.replace('\n', ' ') | |
github_env.write(f"BENCH_GRAPH_TITLE={title}\n") | |
github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n") | |
def start_benchmark(args): | |
k6_path = './k6' | |
if 'BENCH_K6_BIN_PATH' in os.environ: | |
k6_path = os.environ['BENCH_K6_BIN_PATH'] | |
k6_args = [ | |
'run', args.scenario, | |
'--no-color', | |
'--no-connection-reuse', | |
'--no-vu-connection-reuse', | |
] | |
k6_args.extend(['--duration', args.duration]) | |
k6_args.extend(['--iterations', args.n_prompts]) | |
k6_args.extend(['--vus', args.parallel]) | |
k6_args.extend(['--summary-export', 'k6-results.json']) | |
k6_args.extend(['--out', 'csv=k6-results.csv']) | |
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} " | |
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]]) | |
print(f"bench: starting k6 with: {args}") | |
k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr) | |
if k6_completed.returncode != 0: | |
raise Exception("bench: unable to run k6") | |
def start_server(args): | |
server_process = start_server_background(args) | |
attempts = 0 | |
max_attempts = 600 | |
if 'GITHUB_ACTIONS' in os.environ: | |
max_attempts *= 2 | |
while not is_server_listening(args.host, args.port): | |
attempts += 1 | |
if attempts > max_attempts: | |
assert False, "server not started" | |
print(f"bench: waiting for server to start ...") | |
time.sleep(0.5) | |
attempts = 0 | |
while not is_server_ready(args.host, args.port): | |
attempts += 1 | |
if attempts > max_attempts: | |
assert False, "server not ready" | |
print(f"bench: waiting for server to be ready ...") | |
time.sleep(0.5) | |
print("bench: server started and ready.") | |
return server_process | |
def start_server_background(args): | |
# Start the server | |
server_path = '../../../build/bin/llama-server' | |
if 'LLAMA_SERVER_BIN_PATH' in os.environ: | |
server_path = os.environ['LLAMA_SERVER_BIN_PATH'] | |
server_args = [ | |
'--host', args.host, | |
'--port', args.port, | |
] | |
server_args.extend(['--hf-repo', args.hf_repo]) | |
server_args.extend(['--hf-file', args.hf_file]) | |
server_args.extend(['--n-gpu-layers', args.n_gpu_layers]) | |
server_args.extend(['--ctx-size', args.ctx_size]) | |
server_args.extend(['--parallel', args.parallel]) | |
server_args.extend(['--batch-size', args.batch_size]) | |
server_args.extend(['--ubatch-size', args.ubatch_size]) | |
server_args.extend(['--n-predict', args.max_tokens * 2]) | |
server_args.extend(['--defrag-thold', "0.1"]) | |
server_args.append('--cont-batching') | |
server_args.append('--metrics') | |
server_args.append('--flash-attn') | |
args = [str(arg) for arg in [server_path, *server_args]] | |
print(f"bench: starting server with: {' '.join(args)}") | |
pkwargs = { | |
'stdout': subprocess.PIPE, | |
'stderr': subprocess.PIPE | |
} | |
server_process = subprocess.Popen( | |
args, | |
**pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue] | |
def server_log(in_stream, out_stream): | |
for line in iter(in_stream.readline, b''): | |
print(line.decode('utf-8'), end='', file=out_stream) | |
thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout)) | |
thread_stdout.start() | |
thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr)) | |
thread_stderr.start() | |
return server_process | |
def is_server_listening(server_fqdn, server_port): | |
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: | |
result = sock.connect_ex((server_fqdn, server_port)) | |
_is_server_listening = result == 0 | |
if _is_server_listening: | |
print(f"server is listening on {server_fqdn}:{server_port}...") | |
return _is_server_listening | |
def is_server_ready(server_fqdn, server_port): | |
url = f"http://{server_fqdn}:{server_port}/health" | |
response = requests.get(url) | |
return response.status_code == 200 | |
def escape_metric_name(metric_name): | |
return re.sub('[^A-Z0-9]', '_', metric_name.upper()) | |
if __name__ == '__main__': | |
main() | |