Spaces:
Build error
Build error
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, | |
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) { | |
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama)); | |
const int patch_size = 14 * 2; | |
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0); | |
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0); | |
auto img_tokens = image_embed->n_image_pos; | |
// llama_pos mrope_pos[img_tokens * 4]; | |
std::vector<llama_pos> mrope_pos; | |
mrope_pos.resize(img_tokens * 4); | |
for (int y = 0; y < ph; y++) | |
{ | |
for (int x = 0; x < pw; x++) | |
{ | |
int i = y * pw + x; | |
mrope_pos[i] = *st_pos_id; | |
mrope_pos[i + img_tokens] = *st_pos_id + y; | |
mrope_pos[i + img_tokens * 2] = *st_pos_id + x; | |
mrope_pos[i + img_tokens * 3] = 0; | |
} | |
} | |
*st_pos_id += std::max(pw, ph); | |
int processed = 0; | |
std::vector<llama_pos> batch_mrope_pos; | |
batch_mrope_pos.resize(img_tokens * 4); | |
for (int i = 0; i < img_tokens; i += n_batch) { | |
int n_eval = img_tokens - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
// llama_pos batch_mrope_pos[n_eval * 4]; | |
std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0); | |
memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos)); | |
memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos)); | |
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos)); | |
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos)); | |
llama_batch batch = { | |
int32_t(n_eval), // n_tokens | |
nullptr, // token | |
(image_embed->embed+i*n_embd), // embed | |
batch_mrope_pos.data(), // pos | |
nullptr, // n_seq_id | |
nullptr, // seq_id | |
nullptr, // logits | |
}; | |
if (llama_decode(ctx_llama, batch)) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
return false; | |
} | |
*n_past += n_eval; | |
processed += n_eval; | |
} | |
return true; | |
} | |
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) { | |
int N = (int) tokens.size(); | |
std::vector<llama_pos> pos; | |
for (int i = 0; i < N; i += n_batch) { | |
int n_eval = (int) tokens.size() - i; | |
if (n_eval > n_batch) { | |
n_eval = n_batch; | |
} | |
auto batch = llama_batch_get_one(&tokens[i], n_eval); | |
// TODO: add mrope pos ids somewhere else | |
pos.resize(batch.n_tokens * 4); | |
std::fill(pos.begin(), pos.end(), 0); | |
for (int j = 0; j < batch.n_tokens * 3; j ++) { | |
pos[j] = *st_pos_id + (j % batch.n_tokens); | |
} | |
batch.pos = pos.data(); | |
if (llama_decode(ctx_llama, batch)) { | |
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past); | |
return false; | |
} | |
*n_past += n_eval; | |
*st_pos_id += n_eval; | |
} | |
return true; | |
} | |
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) { | |
std::vector<llama_token> tokens; | |
tokens.push_back(id); | |
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id); | |
} | |
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){ | |
std::string str2 = str; | |
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true); | |
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id); | |
return true; | |
} | |
static const char * sample(struct common_sampler * smpl, | |
struct llama_context * ctx_llama, | |
int * n_past, int * st_pos_id) { | |
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1); | |
common_sampler_accept(smpl, id, true); | |
const llama_model * model = llama_get_model(ctx_llama); | |
const llama_vocab * vocab = llama_model_get_vocab(model); | |
static std::string ret; | |
if (llama_vocab_is_eog(vocab, id)) { | |
ret = "</s>"; | |
} else { | |
ret = common_token_to_piece(ctx_llama, id); | |
} | |
eval_id(ctx_llama, id, n_past, st_pos_id); | |
return ret.c_str(); | |
} | |
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,"; | |
static const char* IMG_BASE64_TAG_END = "\">"; | |
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) { | |
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN); | |
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out); | |
} | |
static bool prompt_contains_image(const std::string& prompt) { | |
size_t begin, end; | |
find_image_tag_in_prompt(prompt, begin, end); | |
return (begin != std::string::npos); | |
} | |
// replaces the base64 image tag in the prompt with `replacement` | |
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) { | |
size_t img_base64_str_start, img_base64_str_end; | |
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end); | |
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) { | |
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END); | |
return NULL; | |
} | |
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN); | |
auto base64_bytes_count = img_base64_str_end - base64_bytes_start; | |
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count ); | |
auto required_bytes = base64::required_encode_size(base64_str.size()); | |
auto img_bytes = std::vector<unsigned char>(required_bytes); | |
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin()); | |
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size()); | |
if (!embed) { | |
LOG_ERR("%s: could not load image from base64 string.\n", __func__); | |
return NULL; | |
} | |
return embed; | |
} | |
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") { | |
size_t begin, end; | |
find_image_tag_in_prompt(prompt, begin, end); | |
if (begin == std::string::npos || end == std::string::npos) { | |
return prompt; | |
} | |
auto pre = prompt.substr(0, begin); | |
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END)); | |
return pre + replacement + post; | |
} | |
struct llava_context { | |
struct clip_ctx * ctx_clip = NULL; | |
struct llama_context * ctx_llama = NULL; | |
struct llama_model * model = NULL; | |
}; | |
static void print_usage(int, char ** argv) { | |
LOG("\n example usage:\n"); | |
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); | |
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); | |
} | |
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) { | |
// load and preprocess the image | |
llava_image_embed * embed = NULL; | |
auto prompt = params->prompt; | |
if (prompt_contains_image(prompt)) { | |
if (!params->image.empty()) { | |
LOG_INF("using base64 encoded image instead of command line image path\n"); | |
} | |
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt); | |
if (!embed) { | |
LOG_ERR("%s: can't load image from prompt\n", __func__); | |
return NULL; | |
} | |
params->prompt = remove_image_from_prompt(prompt); | |
} else { | |
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str()); | |
if (!embed) { | |
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str()); | |
return NULL; | |
} | |
} | |
return embed; | |
} | |
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) { | |
int n_past = 0; | |
int cur_pos_id = 0; | |
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict; | |
std::string system_prompt, user_prompt; | |
size_t image_pos = prompt.find("<|vision_start|>"); | |
if (image_pos != std::string::npos) { | |
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image | |
system_prompt = prompt.substr(0, image_pos); | |
user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length()); | |
LOG_INF("system_prompt: %s\n", system_prompt.c_str()); | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
LOG_INF("user_prompt: %s\n", user_prompt.c_str()); | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
} else { | |
// llava-1.5 native mode | |
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>"; | |
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n"; | |
if (params->verbose_prompt) { | |
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str()); | |
} | |
} | |
} | |
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true); | |
if (image_embed != nullptr) { | |
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip); | |
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size); | |
} | |
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false); | |
// generate the response | |
LOG("\n"); | |
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling); | |
if (!smpl) { | |
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); | |
exit(1); | |
} | |
std::string response = ""; | |
for (int i = 0; i < max_tgt_len; i++) { | |
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id); | |
response += tmp; | |
if (strcmp(tmp, "</s>") == 0) break; | |
if (strstr(tmp, "###")) break; // Yi-VL behavior | |
LOG("%s", tmp); | |
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works) | |
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6 | |
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6 | |
fflush(stdout); | |
} | |
common_sampler_free(smpl); | |
LOG("\n"); | |
} | |
static struct llama_model * llava_init(common_params * params) { | |
llama_backend_init(); | |
llama_numa_init(params->numa); | |
llama_model_params model_params = common_model_params_to_llama(*params); | |
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params); | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n" , __func__); | |
return NULL; | |
} | |
return model; | |
} | |
static struct llava_context * llava_init_context(common_params * params, llama_model * model) { | |
const char * clip_path = params->mmproj.c_str(); | |
auto prompt = params->prompt; | |
if (prompt.empty()) { | |
prompt = "describe the image in detail."; | |
} | |
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1); | |
llama_context_params ctx_params = common_context_params_to_llama(*params); | |
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings | |
llama_context * ctx_llama = llama_init_from_model(model, ctx_params); | |
if (ctx_llama == NULL) { | |
LOG_ERR("%s: failed to create the llama_context\n" , __func__); | |
return NULL; | |
} | |
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context)); | |
ctx_llava->ctx_llama = ctx_llama; | |
ctx_llava->ctx_clip = ctx_clip; | |
ctx_llava->model = model; | |
return ctx_llava; | |
} | |
static void llava_free(struct llava_context * ctx_llava) { | |
if (ctx_llava->ctx_clip) { | |
clip_free(ctx_llava->ctx_clip); | |
ctx_llava->ctx_clip = NULL; | |
} | |
llama_free(ctx_llava->ctx_llama); | |
llama_model_free(ctx_llava->model); | |
llama_backend_free(); | |
} | |
static void debug_test_mrope_2d() { | |
// 1. Initialize backend | |
ggml_backend_t backend = NULL; | |
std::string backend_name = ""; | |
fprintf(stderr, "%s: using CUDA backend\n", __func__); | |
backend = ggml_backend_cuda_init(0); // init device 0 | |
backend_name = "cuda"; | |
if (!backend) { | |
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); | |
} | |
// if there aren't GPU Backends fallback to CPU backend | |
if (!backend) { | |
backend = ggml_backend_cpu_init(); | |
backend_name = "cpu"; | |
} | |
// Calculate the size needed to allocate | |
size_t ctx_size = 0; | |
ctx_size += 2 * ggml_tensor_overhead(); // tensors | |
// no need to allocate anything else! | |
// 2. Allocate `ggml_context` to store tensor data | |
struct ggml_init_params params = { | |
/*.mem_size =*/ ctx_size, | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors() | |
}; | |
struct ggml_context * ctx = ggml_init(params); | |
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30); | |
ggml_set_name(inp_raw, "inp_raw"); | |
ggml_set_input(inp_raw); | |
struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4); | |
ggml_set_name(pos, "pos"); | |
ggml_set_input(pos); | |
std::vector<float> dummy_q; | |
dummy_q.resize(128 * 12 * 30); | |
std::fill(dummy_q.begin(), dummy_q.end(), 0.1); | |
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw)); | |
std::vector<int> pos_id; | |
pos_id.resize(30 * 4); | |
for (int i = 0; i < 30; i ++) { | |
pos_id[i] = i; | |
pos_id[i + 30] = i + 10; | |
pos_id[i + 60] = i + 20; | |
pos_id[i + 90] = i + 30; | |
} | |
int sections[4] = {32, 32, 0, 0}; | |
// 4. Allocate a `ggml_backend_buffer` to store all tensors | |
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); | |
// 5. Copy tensor data from main memory (RAM) to backend buffer | |
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw)); | |
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos)); | |
// 6. Create a `ggml_cgraph` for mul_mat operation | |
struct ggml_cgraph * gf = NULL; | |
struct ggml_context * ctx_cgraph = NULL; | |
// create a temporally context to build the graph | |
struct ggml_init_params params0 = { | |
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() | |
}; | |
ctx_cgraph = ggml_init(params0); | |
gf = ggml_new_graph(ctx_cgraph); | |
struct ggml_tensor * result0 = ggml_rope_multi( | |
ctx_cgraph, inp_raw, pos, nullptr, | |
128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1, | |
0, 1, 32, 1); | |
// Add "result" tensor and all of its dependencies to the cgraph | |
ggml_build_forward_expand(gf, result0); | |
// 7. Create a `ggml_gallocr` for cgraph computation | |
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); | |
ggml_gallocr_alloc_graph(allocr, gf); | |
// 9. Run the computation | |
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading | |
if (ggml_backend_is_cpu(backend)) { | |
ggml_backend_cpu_set_n_threads(backend, n_threads); | |
} | |
ggml_backend_graph_compute(backend, gf); | |
// 10. Retrieve results (output tensors) | |
// in this example, output tensor is always the last tensor in the graph | |
struct ggml_tensor * result = result0; | |
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1]; | |
float * result_data = (float *)malloc(ggml_nbytes(result)); | |
// because the tensor data is stored in device buffer, we need to copy it back to RAM | |
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result)); | |
const std::string bin_file = "mrope_2d_" + backend_name +".bin"; | |
std::ofstream outFile(bin_file, std::ios::binary); | |
if (outFile.is_open()) { | |
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result)); | |
outFile.close(); | |
std::cout << "Data successfully written to " + bin_file << std::endl; | |
} else { | |
std::cerr << "Error opening file!" << std::endl; | |
} | |
free(result_data); | |
// 11. Free memory and exit | |
ggml_free(ctx_cgraph); | |
ggml_gallocr_free(allocr); | |
ggml_free(ctx); | |
ggml_backend_buffer_free(buffer); | |
ggml_backend_free(backend); | |
} | |
static void debug_dump_img_embed(struct llava_context * ctx_llava) { | |
int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama)); | |
int ne = n_embd * 4; | |
float vals[56 * 56 * 3]; | |
// float embd[ne]; | |
std::vector<float> embd; | |
embd.resize(ne); | |
for (int i = 0; i < 56*56; i++) | |
{ | |
for (int c = 0; c < 3; c++) | |
vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56); | |
} | |
clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data()); | |
std::ofstream outFile("img_embed.bin", std::ios::binary); | |
if (outFile.is_open()) { | |
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float)); | |
outFile.close(); | |
std::cout << "Data successfully written to mrope.bin" << std::endl; | |
} else { | |
std::cerr << "Error opening file!" << std::endl; | |
} | |
} | |
int main(int argc, char ** argv) { | |
ggml_time_init(); | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { | |
print_usage(argc, argv); | |
return 1; | |
} | |
auto * model = llava_init(¶ms); | |
if (model == NULL) { | |
fprintf(stderr, "%s: error: failed to init llava model\n", __func__); | |
return 1; | |
} | |
if (prompt_contains_image(params.prompt)) { | |
auto * ctx_llava = llava_init_context(¶ms, model); | |
auto * image_embed = load_image(ctx_llava, ¶ms, ""); | |
// process the prompt | |
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
llava_image_embed_free(image_embed); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} else if (params.image[0].empty()) { | |
auto ctx_llava = llava_init_context(¶ms, model); | |
debug_test_mrope_2d(); | |
debug_dump_img_embed(ctx_llava); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} else { | |
for (auto & image : params.image) { | |
auto * ctx_llava = llava_init_context(¶ms, model); | |
auto * image_embed = load_image(ctx_llava, ¶ms, image); | |
if (!image_embed) { | |
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str()); | |
return 1; | |
} | |
// process the prompt | |
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt); | |
llama_perf_context_print(ctx_llava->ctx_llama); | |
llava_image_embed_free(image_embed); | |
ctx_llava->model = NULL; | |
llava_free(ctx_llava); | |
} | |
} | |
llama_model_free(model); | |
return 0; | |
} | |