File size: 3,303 Bytes
5a29263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require

#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
#endif

#include "types.comp"

layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};

layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif

#include "dequant_funcs.comp"

layout (push_constant) uniform parameter
{
    uint ncols;
    uint stride_a;
    uint stride_b;
    uint stride_d;

    uint batch_stride_a;
    uint batch_stride_b;
    uint batch_stride_d;

#ifdef MUL_MAT_ID
    uint nei0;
    uint ne11;
#else
    uint ne02;
    uint ne12;
    uint broadcast2;
    uint broadcast3;
#endif
} p;

void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
#ifdef MUL_MAT_ID
    const uint expert_idx = gl_GlobalInvocationID.y;
#else
    const uint batch_idx = gl_GlobalInvocationID.y;
#endif

#ifndef MUL_MAT_ID
    uint batch_idx_a = 0;
    if (batch_idx != 0) {
        const uint i13 = batch_idx / p.ne12;
        const uint i12 = batch_idx % p.ne12;

        const uint i03 = i13 / p.broadcast3;
        const uint i02 = i12 / p.broadcast2;

        batch_idx_a = i03 * p.ne02 + i02;
    }
#else
    const uint expert_id = data_ids[expert_idx];
#endif

    a_offset =
#ifdef MUL_MAT_ID
            expert_id * p.batch_stride_a;
#else
            batch_idx_a * p.batch_stride_a;
#endif
    b_offset =
#ifdef MUL_MAT_ID
            (expert_idx % p.ne11) * p.stride_b;
#else
            batch_idx * p.batch_stride_b;
#endif
    d_offset =
#ifdef MUL_MAT_ID
            expert_idx * p.stride_d;
#else
            batch_idx * p.batch_stride_d;
#endif
}

layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
layout (constant_id = 2) const uint NUM_COLS = 1;

shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];

void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
    // sum up partial sums and write back result
    [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
        [[unroll]] for (uint n = 0; n < num_rows; ++n) {
            tmpsh[j][n][tid] = temp[j][n];
        }
    }
    barrier();
    [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
        if (tid < s) {
            [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
                [[unroll]] for (uint n = 0; n < num_rows; ++n) {
                    tmpsh[j][n][tid] += tmpsh[j][n][tid + s];
                }
            }
        }
        barrier();
    }
    if (tid == 0) {
        [[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
            [[unroll]] for (uint n = 0; n < num_rows; ++n) {
                data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
            }
        }
    }
}