Spaces:
Build error
Build error
File size: 5,218 Bytes
5a29263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#version 450
#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require
#include "mul_mat_vec_base.comp"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#define K_PER_ITER 8
#else
#define K_PER_ITER 2
#endif
uint a_offset, b_offset, d_offset, y_offset;
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
{
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
#if K_PER_ITER == 8
#if QUANT_R == 2
const vec4 bv02 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]);
const vec4 bv13 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4]);
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
#else
const vec4 bv0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4 + 1]);
#endif
#else
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs + y_offset]);
}
#endif
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;
#if K_PER_ITER == 8
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}
// matrix multiplication
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);
if (dm.y == 0)
rowtmp *= dm.x;
temp[j][n] += rowtmp;
#else
const vec2 v = dequantize(ib, iqs, a_offset);
// matrix multiplication
temp[j][n] = fma(FLOAT_TYPE(v.x), b0, temp[j][n]);
if (!OOB) {
temp[j][n] = fma(FLOAT_TYPE(v.y), b1, temp[j][n]);
}
#endif
}
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint tid = gl_LocalInvocationID.x;
get_offsets(a_offset, b_offset, d_offset);
a_offset /= QUANT_K;
y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) {
num_iters++;
}
int unroll_count = 4;
uint unrolled_iters = num_iters & ~(unroll_count - 1);
uint i = 0;
while (i < unrolled_iters) {
// Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
i++;
}
}
unroll_count = 2;
unrolled_iters = num_iters & ~(unroll_count - 1);
while (i < unrolled_iters) {
// Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
i++;
}
}
while (i < num_iters) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true);
i++;
}
reduce_result(temp, d_offset, first_row, num_rows, tid);
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
#if defined(DATA_A_IQ2_XXS) || defined(DATA_A_IQ2_XS) || defined(DATA_A_IQ2_S) || defined(DATA_A_IQ3_XXS) || defined(DATA_A_IQ3_S) || defined(DATA_A_IQ4_NL)
init_iq_shmem(gl_WorkGroupSize);
#endif
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
}
}
|