File size: 11,071 Bytes
5a29263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import pytest
from openai import OpenAI
from utils import *

server: ServerProcess

@pytest.fixture(autouse=True)
def create_server():
    global server
    server = ServerPreset.tinyllama2()


@pytest.mark.parametrize(

    "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",

    [

        (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", False, None),

        (None, "Book", "Hey", 8, "But she couldn't", 69, 8, "length", True, None),

        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", False, None),

        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True,  None),

        (None, "Book", "What is the best book", 8, "(Suddenly)+|\\{ \" Sarax.", 77, 8, "length", True, 'chatml'),

        (None, "Book", "What is the best book", 8, "^ blue",                    23, 8, "length", True, "This is not a chat template, it is"),

        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),

        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),

    ]

)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
    global server
    server.jinja = jinja
    server.chat_template = chat_template
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "model": model,
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
    })
    assert res.status_code == 200
    assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
    assert res.body["system_fingerprint"].startswith("b")
    assert res.body["model"] == model if model is not None else server.model_alias
    assert res.body["usage"]["prompt_tokens"] == n_prompt
    assert res.body["usage"]["completion_tokens"] == n_predicted
    choice = res.body["choices"][0]
    assert "assistant" == choice["message"]["role"]
    assert match_regex(re_content, choice["message"]["content"])
    assert choice["finish_reason"] == finish_reason


@pytest.mark.parametrize(

    "system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",

    [

        ("Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),

        ("You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),

    ]

)
def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
    global server
    server.model_alias = None # try using DEFAULT_OAICOMPAT_MODEL
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        "stream": True,
    })
    content = ""
    last_cmpl_id = None
    for data in res:
        choice = data["choices"][0]
        assert data["system_fingerprint"].startswith("b")
        assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
        if last_cmpl_id is None:
            last_cmpl_id = data["id"]
        assert last_cmpl_id == data["id"] # make sure the completion id is the same for all events in the stream
        if choice["finish_reason"] in ["stop", "length"]:
            assert data["usage"]["prompt_tokens"] == n_prompt
            assert data["usage"]["completion_tokens"] == n_predicted
            assert "content" not in choice["delta"]
            assert match_regex(re_content, content)
            assert choice["finish_reason"] == finish_reason
        else:
            assert choice["finish_reason"] is None
            content += choice["delta"]["content"]


def test_chat_completion_with_openai_library():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=8,
        seed=42,
        temperature=0.8,
    )
    assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
    assert res.choices[0].finish_reason == "length"
    assert res.choices[0].message.content is not None
    assert match_regex("(Suddenly)+", res.choices[0].message.content)


def test_chat_template():
    global server
    server.chat_template = "llama3"
    server.debug = True  # to get the "__verbose" object in the response
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": 8,
        "messages": [
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ]
    })
    assert res.status_code == 200
    assert "__verbose" in res.body
    assert res.body["__verbose"]["prompt"] == "<s> <|start_header_id|>system<|end_header_id|>\n\nBook<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat is the best book<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"


def test_apply_chat_template():
    global server
    server.chat_template = "command-r"
    server.start()
    res = server.make_request("POST", "/apply-template", data={
        "messages": [
            {"role": "system", "content": "You are a test."},
            {"role": "user", "content":"Hi there"},
        ]
    })
    assert res.status_code == 200
    assert "prompt" in res.body
    assert res.body["prompt"] == "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a test.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"


@pytest.mark.parametrize("response_format,n_predicted,re_content", [

    ({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),

    ({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),

    ({"type": "json_object"}, 10, "(\\{|John)+"),

    ({"type": "sound"}, 0, None),

    # invalid response format (expected to fail)

    ({"type": "json_object", "schema": 123}, 0, None),

    ({"type": "json_object", "schema": {"type": 123}}, 0, None),

    ({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),

])
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": n_predicted,
        "messages": [
            {"role": "system", "content": "You are a coding assistant."},
            {"role": "user", "content": "Write an example"},
        ],
        "response_format": response_format,
    })
    if re_content is not None:
        assert res.status_code == 200
        choice = res.body["choices"][0]
        assert match_regex(re_content, choice["message"]["content"])
    else:
        assert res.status_code != 200
        assert "error" in res.body


@pytest.mark.parametrize("messages", [

    None,

    "string",

    [123],

    [{}],

    [{"role": 123}],

    [{"role": "system", "content": 123}],

    # [{"content": "hello"}], # TODO: should not be a valid case

    [{"role": "system", "content": "test"}, {}],

])
def test_invalid_chat_completion_req(messages):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "messages": messages,
    })
    assert res.status_code == 400 or res.status_code == 500
    assert "error" in res.body


def test_chat_completion_with_timings_per_token():
    global server
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "max_tokens": 10,
        "messages": [{"role": "user", "content": "test"}],
        "stream": True,
        "timings_per_token": True,
    })
    for data in res:
        assert "timings" in data
        assert "prompt_per_second" in data["timings"]
        assert "predicted_per_second" in data["timings"]
        assert "predicted_n" in data["timings"]
        assert data["timings"]["predicted_n"] <= 10


def test_logprobs():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        temperature=0.0,
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=5,
        logprobs=True,
        top_logprobs=10,
    )
    output_text = res.choices[0].message.content
    aggregated_text = ''
    assert res.choices[0].logprobs is not None
    assert res.choices[0].logprobs.content is not None
    for token in res.choices[0].logprobs.content:
        aggregated_text += token.token
        assert token.logprob <= 0.0
        assert token.bytes is not None
        assert len(token.top_logprobs) > 0
    assert aggregated_text == output_text


def test_logprobs_stream():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        temperature=0.0,
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=5,
        logprobs=True,
        top_logprobs=10,
        stream=True,
    )
    output_text = ''
    aggregated_text = ''
    for data in res:
        choice = data.choices[0]
        if choice.finish_reason is None:
            if choice.delta.content:
                output_text += choice.delta.content
            assert choice.logprobs is not None
            assert choice.logprobs.content is not None
            for token in choice.logprobs.content:
                aggregated_text += token.token
                assert token.logprob <= 0.0
                assert token.bytes is not None
                assert token.top_logprobs is not None
                assert len(token.top_logprobs) > 0
    assert aggregated_text == output_text