File size: 9,109 Bytes
5a29263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include "kernel_operator.h"

#include <cmath>

using namespace AscendC;

#define BUFFER_NUM 2
const int64_t SUPPORTED_MAX_DIM = 65535;  // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>

template <typename SRC_T, typename DST_T>
class DupByRows {
   public:
    __aicore__ inline DupByRows() {}
    __aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,

                                size_t *input_nb_ub) {
        /* Dup by rows when src is contigous on first dimension and dst is

        contiguous, each kernel process one row.

        */

        // Input has four dims.
        int64_t op_block_num = GetBlockNum();
        int64_t op_block_idx = GetBlockIdx();

        // param
        num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
        num_elem = input_ne_ub[0];

        // index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
        idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
        idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
                  / (input_ne_ub[1]);
        idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
                - idx_ne2 * input_ne_ub[1];

        // src may not contiguous in dim [1,2,3], so stride decited by ne&nb
        src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
                     + input_nb_ub[1] * idx_ne1;

        // dst is contiguous
        dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));

        src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
                                                                src_stride));
        dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
                                                                dst_stride));

        pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
                                                32 - 1) / 32 * 32);
        pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
                                                32 - 1) / 32 * 32);
    }

    __aicore__ inline void copy_in() {
        LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
        const size_t elem_per_block = 32 / sizeof(SRC_T);
        size_t tail = num_elem % elem_per_block;
        size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
        DataCopy(src_local, src_gm, cpy_elements_len);
        src_queue.EnQue(src_local);
    }

    __aicore__ inline void copy_out() {
        LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
#ifdef ASCEND_310P
        const size_t elem_per_block = 32 / sizeof(DST_T);
        size_t tail = num_elem % elem_per_block;
        size_t len = num_elem & ~(elem_per_block - 1);
        if (len > 0) {
            DataCopy(dst_gm, dst_local, len);
        }
        if(tail != 0) {
            for (size_t i = tail; i < elem_per_block; i++) {
                dst_local[len + i].SetValue(0, 0);
            }
            SetAtomicAdd<float>();
            DataCopy(dst_gm[len], dst_local[len], elem_per_block);
            SetAtomicNone();
        }
#else
        DataCopyExtParams dataCopyParams;
        dataCopyParams.blockCount = 1;
        dataCopyParams.blockLen = num_elem * sizeof(DST_T);
        DataCopyPad(dst_gm, dst_local, dataCopyParams);
#endif
        dst_queue.FreeTensor(dst_local);
    }

    __aicore__ inline void dup() {
        // main process, copy one row data from src to dst.
        copy_in();

        LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
        LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();

        int32_t BLOCK_NUM = 32 / sizeof(DST_T);
        DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
                                        / BLOCK_NUM * BLOCK_NUM);
        dst_queue.EnQue<DST_T>(dst_local);

        src_queue.FreeTensor(src_local);
        copy_out();
    }

    __aicore__ inline void dup_with_cast() {
        // main process, copy one row data from src to dst.
        // cast dtype from src to dst.
        copy_in();

        LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
        LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();

        Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
        dst_queue.EnQue<DST_T>(dst_local);

        src_queue.FreeTensor(src_local);
        copy_out();
    }

   private:

    TPipe pipe;
    GlobalTensor<SRC_T> src_gm;
    GlobalTensor<DST_T> dst_gm;

    int64_t num_rows;
    int64_t num_elem;
    int64_t idx_ne3;
    int64_t idx_ne2;
    int64_t idx_ne1;
    int64_t src_stride;
    int64_t dst_stride;

    TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
    TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
};

template <typename T>
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
    auto gm_ptr = (__gm__ uint8_t *)gm;
    auto ub_ptr = (uint8_t *)(ub);
    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
        *ub_ptr = *gm_ptr;
    }
}

extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(

                                                        GM_ADDR src_gm,

                                                        GM_ADDR dst_gm,

                                                        GM_ADDR input_ne_gm,

                                                        GM_ADDR input_nb_gm,

                                                        GM_ADDR output_ne_gm,

                                                        GM_ADDR output_nb_gm) {

    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];
    size_t output_nb_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);
    copy_to_ub(output_nb_gm, output_nb_ub, 32);

    DupByRows<half, half> op;
    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
    op.dup();
}

extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(

                                                        GM_ADDR src_gm,

                                                        GM_ADDR dst_gm,

                                                        GM_ADDR input_ne_gm,

                                                        GM_ADDR input_nb_gm,

                                                        GM_ADDR output_ne_gm,

                                                        GM_ADDR output_nb_gm) {
    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];
    size_t output_nb_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);
    copy_to_ub(output_nb_gm, output_nb_ub, 32);

    DupByRows<float_t, float_t> op;
    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
    op.dup();
}

extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(

                                                        GM_ADDR src_gm,

                                                        GM_ADDR dst_gm,

                                                        GM_ADDR input_ne_gm,

                                                        GM_ADDR input_nb_gm,

                                                        GM_ADDR output_ne_gm,

                                                        GM_ADDR output_nb_gm) {

    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];
    size_t output_nb_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);
    copy_to_ub(output_nb_gm, output_nb_ub, 32);

    DupByRows<float_t, half> op;
    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
    op.dup_with_cast();
}

extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(

                                                        GM_ADDR src_gm,

                                                        GM_ADDR dst_gm,

                                                        GM_ADDR input_ne_gm,

                                                        GM_ADDR input_nb_gm,

                                                        GM_ADDR output_ne_gm,

                                                        GM_ADDR output_nb_gm) {

    // copy params from gm to ub.
    int64_t input_ne_ub[4];
    size_t input_nb_ub[4];
    int64_t output_ne_ub[4];
    size_t output_nb_ub[4];

    copy_to_ub(input_ne_gm, input_ne_ub, 32);
    copy_to_ub(input_nb_gm, input_nb_ub, 32);
    copy_to_ub(output_ne_gm, output_ne_ub, 32);
    copy_to_ub(output_nb_gm, output_nb_ub, 32);

    DupByRows<half, float_t> op;
    op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
    op.dup_with_cast();
}