File size: 2,757 Bytes
5a29263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
## Overview

> [!IMPORTANT]
> This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and
> insecure. **Never run the RPC server on an open network or in a sensitive environment!**

The `rpc-server` allows  running `ggml` backend on a remote host.
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
This can be used for distributed LLM inference with `llama.cpp` in the following way:

```mermaid

flowchart TD

    rpcb<-->|TCP|srva

    rpcb<-->|TCP|srvb

    rpcb<-.->|TCP|srvn

    subgraph hostn[Host N]

    srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"]

    end

    subgraph hostb[Host B]

    srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"]

    end

    subgraph hosta[Host A]

    srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"]

    end

    subgraph host[Main Host]

    local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli]

    ggml[llama-cli]<-->rpcb[RPC backend]

    end

    style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5

```

Each host can run a different backend, e.g. one with CUDA and another with Metal.
You can also run multiple `rpc-server` instances on the same host, each with a different backend.

## Usage

On each host, build the corresponding backend with `cmake` and add `-DGGML_RPC=ON` to the build options.
For example, to build the CUDA backend with RPC support:

```bash

mkdir build-rpc-cuda

cd build-rpc-cuda

cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON

cmake --build . --config Release

```

Then, start the `rpc-server` with the backend:

```bash

$ bin/rpc-server -p 50052

create_backend: using CUDA backend

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no

ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes

ggml_cuda_init: found 1 CUDA devices:

  Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes

Starting RPC server on 0.0.0.0:50052

```

When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
```bash

$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052

```
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.


On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options.
Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`:

```bash

$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99

```

This way you can offload model layers to both local and remote devices.