YANGSongsong commited on
Commit
27dbc2e
·
verified ·
1 Parent(s): 600c02a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -1,19 +1,9 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
- import gradio as gr
4
  import pandas as pd
5
  from ultralytics import YOLO
6
  from skimage import data
7
  from PIL import Image
8
 
9
- pipe = pipeline("text-classification")
10
- def clf(text):
11
- result = pipe(text)
12
- label = result[0]['label']
13
- score = result[0]['score']
14
- res = {label:score,'POSITIVE' if label=='NEGATIVE' else 'NEGATIVE': 1-score}
15
- return res
16
-
17
  model = YOLO('yolov8n-cls.pt')
18
  def predict(img):
19
  result = model.predict(source=img)
@@ -23,8 +13,7 @@ def predict(img):
23
  df = df.sort_values('probs',ascending=False)
24
  res = dict(zip(df['names'],df['probs']))
25
  return res
26
- demo = gr.Interface(fn=clf, inputs="text", outputs="label")
27
  demo = gr.Interface(fn = predict,inputs = gr.Image(type='pil'), outputs = gr.Label(num_top_classes=5),
28
  examples = ['cat.jpeg','people.jpeg','coffee.jpeg'])
29
- gr.close_all()
30
- demo.launch(share=True)
 
1
  import gradio as gr
 
 
2
  import pandas as pd
3
  from ultralytics import YOLO
4
  from skimage import data
5
  from PIL import Image
6
 
 
 
 
 
 
 
 
 
7
  model = YOLO('yolov8n-cls.pt')
8
  def predict(img):
9
  result = model.predict(source=img)
 
13
  df = df.sort_values('probs',ascending=False)
14
  res = dict(zip(df['names'],df['probs']))
15
  return res
16
+ gr.close_all()
17
  demo = gr.Interface(fn = predict,inputs = gr.Image(type='pil'), outputs = gr.Label(num_top_classes=5),
18
  examples = ['cat.jpeg','people.jpeg','coffee.jpeg'])
19
+ demo.launch()