Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from scipy.signal import find_peaks
|
5 |
+
|
6 |
+
model = tf.keras.models.load_model('aritmi_distilled.h5')
|
7 |
+
|
8 |
+
def extract_features(ekg_signal):
|
9 |
+
if len(ekg_signal) < 10:
|
10 |
+
return None
|
11 |
+
|
12 |
+
r_peaks, _ = find_peaks(ekg_signal, height=0.5, distance=60)
|
13 |
+
|
14 |
+
if len(r_peaks) < 2:
|
15 |
+
return None
|
16 |
+
|
17 |
+
features = []
|
18 |
+
rr_intervals = np.diff(r_peaks)
|
19 |
+
|
20 |
+
if len(rr_intervals) == 0:
|
21 |
+
return None
|
22 |
+
|
23 |
+
features.append(np.nanmean(rr_intervals))
|
24 |
+
features.append(np.nanstd(rr_intervals))
|
25 |
+
features.append(np.nanmean(ekg_signal))
|
26 |
+
features.append(np.nanmean(r_peaks))
|
27 |
+
features.append(np.nanmean(np.diff(r_peaks)))
|
28 |
+
|
29 |
+
pq_interval = np.nanmean(rr_intervals)
|
30 |
+
qt_interval = np.nanmean(rr_intervals)
|
31 |
+
st_interval = np.nanmean(rr_intervals)
|
32 |
+
|
33 |
+
features.extend([pq_interval, qt_interval, st_interval])
|
34 |
+
return features
|
35 |
+
|
36 |
+
def predict(ekg_signal):
|
37 |
+
try:
|
38 |
+
ekg_signal_list = [float(value.strip()) for value in ekg_signal.split(',') if value.strip()]
|
39 |
+
ekg_signal_array = np.array(ekg_signal_list, dtype=np.float32)
|
40 |
+
except Exception as e:
|
41 |
+
return f"Invalid dtype. Error: {str(e)}"
|
42 |
+
|
43 |
+
if ekg_signal_array.size == 0:
|
44 |
+
return "Empty ECG signal."
|
45 |
+
|
46 |
+
features = extract_features(ekg_signal_array)
|
47 |
+
if features is None:
|
48 |
+
return "Couldn't extract feature."
|
49 |
+
|
50 |
+
features = np.array(features).reshape(1, -1)
|
51 |
+
prediction = model.predict(features)
|
52 |
+
risk_probabilities = prediction[0]
|
53 |
+
aritmi_riski_yuzde = risk_probabilities[1] * 100
|
54 |
+
|
55 |
+
return f"Arrhythmia risk: %{aritmi_riski_yuzde:.2f}"
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=predict,
|
61 |
+
inputs=gr.Textbox(
|
62 |
+
label="ECG Signal",
|
63 |
+
placeholder="0.034, 0.181, 0.264, ...",
|
64 |
+
),
|
65 |
+
outputs="text",
|
66 |
+
description="Arrhythmia risk predicting model from ECG data",
|
67 |
+
live=False
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
interface.launch()
|