import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Highlight the diagnosis in bold diagnosis_start = response.find("Предварительный диагноз:") if diagnosis_start != -1: diagnosis_end = response.find("\n", diagnosis_start) if diagnosis_end == -1: diagnosis_end = len(response) diagnosis = response[diagnosis_start:diagnosis_end] response = response[:diagnosis_start] + f"{diagnosis}" + response[diagnosis_end:] # Add an identification message to the response final_response = f"{response}\n\nСоздано больницей EMS штата Alta" yield final_response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="Привет! Я помощник врача в больнице EMS штата Alta! Опиши свои симптомы, и я поставлю предварительный диагноз.", label="Системное сообщение" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальное количество новых токенов"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (ядерное семплирование)", ), ], ) if __name__ == "__main__": demo.launch()