# code mostly taken from https://github.com/huggingface/diffusers import os import glob import json from dataclasses import dataclass from typing import List, Optional, Tuple, Union import copy import torch import torch.nn as nn import torch.utils.checkpoint from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers import ModelMixin from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from .unet_3d_blocks import ( CrossAttnDownBlockPseudo3D, CrossAttnUpBlockPseudo3D, DownBlockPseudo3D, UNetMidBlockPseudo3DCrossAttn, UpBlockPseudo3D, get_down_block, get_up_block, ) from .resnet import PseudoConv3d logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNetPseudo3DConditionOutput(BaseOutput): sample: torch.FloatTensor class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, center_input_sample: bool = False, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "CrossAttnDownBlockPseudo3D", "DownBlockPseudo3D", ), mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn", up_block_types: Tuple[str] = ( "UpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", "CrossAttnUpBlockPseudo3D", ), only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: int = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, attention_head_dim: Union[int, Tuple[int]] = 8, dual_cross_attention: bool = False, use_linear_projection: bool = False, class_embed_type: Optional[str] = None, num_class_embeds: Optional[int] = None, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", **kwargs ): super().__init__() self.sample_size = sample_size time_embed_dim = block_out_channels[0] * 4 if 'temporal_downsample' in kwargs and kwargs['temporal_downsample'] is True: kwargs['temporal_downsample_time'] = 3 self.temporal_downsample_time = kwargs.get('temporal_downsample_time', 0) # input self.conv_in = PseudoConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1), model_config=kwargs) # time self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) # class embedding if class_embed_type is None and num_class_embeds is not None: self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) elif class_embed_type == "timestep": self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) elif class_embed_type == "identity": self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) else: self.class_embedding = None self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) if isinstance(only_cross_attention, bool): only_cross_attention = [only_cross_attention] * len(down_block_types) if isinstance(attention_head_dim, int): attention_head_dim = (attention_head_dim,) * len(down_block_types) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 kwargs_copy=copy.deepcopy(kwargs) temporal_downsample_i = ((i >= (len(down_block_types)-self.temporal_downsample_time)) and (not is_final_block)) kwargs_copy.update({'temporal_downsample': temporal_downsample_i} ) # kwargs_copy.update({'SparseCausalAttention_index': temporal_downsample_i} ) if temporal_downsample_i: print(f'Initialize model temporal downsample at layer {i}') down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim[i], downsample_padding=downsample_padding, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, use_temporal=True, model_config=kwargs_copy ) self.down_blocks.append(down_block) # mid if mid_block_type == "UNetMidBlockPseudo3DCrossAttn": self.mid_block = UNetMidBlockPseudo3DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift=resnet_time_scale_shift, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attention_head_dim[-1], resnet_groups=norm_num_groups, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, use_temporal=True, ##not sure check org fatezero model_config=kwargs ) else: raise ValueError(f"unknown mid_block_type : {mid_block_type}") # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_attention_head_dim = list(reversed(attention_head_dim)) only_cross_attention = list(reversed(only_cross_attention)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False kwargs_copy=copy.deepcopy(kwargs) kwargs_copy.update({'temporal_downsample': i < (self.temporal_downsample_time-1)}) if i < (self.temporal_downsample_time-1): print(f'Initialize model temporal updample at layer {i}') up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=reversed_attention_head_dim[i], dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention[i], upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, use_temporal=True, model_config=kwargs_copy ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps ) self.conv_act = nn.SiLU() self.conv_out = PseudoConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1, model_config=kwargs) def set_attention_slice(self, slice_size): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ sliceable_head_dims = [] def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): if hasattr(module, "set_attention_slice"): sliceable_head_dims.append(module.sliceable_head_dim) for child in module.children(): fn_recursive_retrieve_slicable_dims(child) # retrieve number of attention layers for module in self.children(): fn_recursive_retrieve_slicable_dims(module) num_slicable_layers = len(sliceable_head_dims) if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = [dim // 2 for dim in sliceable_head_dims] elif slice_size == "max": # make smallest slice possible slice_size = num_slicable_layers * [1] slice_size = ( num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size ) if len(slice_size) != len(sliceable_head_dims): raise ValueError( f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." ) for i in range(len(slice_size)): size = slice_size[i] dim = sliceable_head_dims[i] if size is not None and size > dim: raise ValueError(f"size {size} has to be smaller or equal to {dim}.") # Recursively walk through all the children. # Any children which exposes the set_attention_slice method # gets the message def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): if hasattr(module, "set_attention_slice"): module.set_attention_slice(slice_size.pop()) for child in module.children(): fn_recursive_set_attention_slice(child, slice_size) reversed_slice_size = list(reversed(slice_size)) for module in self.children(): fn_recursive_set_attention_slice(module, reversed_slice_size) def _set_gradient_checkpointing(self, module, value=False): if isinstance( module, (CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D), ): module.gradient_checkpointing = value def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor] = None, # None attention_mask: Optional[torch.Tensor] = None, # None down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, return_dict: bool = True, **kwargs, ) -> Union[UNetPseudo3DConditionOutput, Tuple]: # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # prepare attention_mask if attention_mask is not None: # None attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: # False sample = 2 * sample - 1.0 # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) emb = self.time_embedding(t_emb) if self.class_embedding is not None: if class_labels is None: raise ValueError("class_labels should be provided when num_class_embeds > 0") if self.config.class_embed_type == "timestep": class_labels = self.time_proj(class_labels) class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) emb = emb + class_emb # 2. pre-process sample = self.conv_in(sample) # 3. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **kwargs, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples if down_block_additional_residuals is not None: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): new_down_block_res_samples += (down_block_res_sample + down_block_additional_residual,) down_block_res_samples = new_down_block_res_samples # 4. mid sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **kwargs, ) if mid_block_additional_residual is not None: sample = sample + mid_block_additional_residual # for i in down_block_res_samples: print(i.shape) # torch.Size([1, 320, 16, 64, 64]) # torch.Size([1, 320, 16, 64, 64]) # torch.Size([1, 320, 16, 64, 64]) # torch.Size([1, 320, 8, 32, 32]) # torch.Size([1, 640, 8, 32, 32]) # torch.Size([1, 640, 8, 32, 32]) # torch.Size([1, 640, 4, 16, 16]) # torch.Size([1, 1280, 4, 16, 16]) # torch.Size([1, 1280, 4, 16, 16]) # torch.Size([1, 1280, 2, 8, 8]) # torch.Size([1, 1280, 2, 8, 8]) # torch.Size([1, 1280, 2, 8, 8]) # 5. up # sample torch.Size([1, 1280, 37, 32, 32]) # sample torch.Size([1, 640, 37, 64, 64]) # sample torch.Size([1, 320, 37, 64, 64]) for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, attention_mask=attention_mask, **kwargs, ) # if up_block_additional_residual is not None and sample.shape[-1] == 32: # sample = sample + up_block_additional_residual.unsqueeze(0) ### dift embedding for key point else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, ) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return UNetPseudo3DConditionOutput(sample=sample) @classmethod def from_2d_model(cls, model_path, model_config): config_path = os.path.join(model_path, "config.json") if not os.path.isfile(config_path): raise RuntimeError(f"{config_path} does not exist") with open(config_path, "r") as f: config = json.load(f) config.pop("_class_name") config.pop("_diffusers_version") block_replacer = { "CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D", "DownBlock2D": "DownBlockPseudo3D", "UpBlock2D": "UpBlockPseudo3D", "CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D", } def convert_2d_to_3d_block(block): return block_replacer[block] if block in block_replacer else block config["down_block_types"] = [ convert_2d_to_3d_block(block) for block in config["down_block_types"] ] config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]] if model_config is not None: config.update(model_config) model = cls(**config) state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin")) if state_dict_path_condidates: state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu") model.load_2d_state_dict(state_dict=state_dict) return model def load_2d_state_dict(self, state_dict, **kwargs): state_dict_3d = self.state_dict() # for k,v in state_dict_3d.items(): # print("new 3d model key:",k) # for k,v in state_dict.items(): # print("org 2d model key:",k) # exit() for k, v in state_dict.items(): if k not in state_dict_3d: raise KeyError(f"2d state_dict key {k} does not exist in 3d model") elif v.shape != state_dict_3d[k].shape: raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}") for k, v in state_dict_3d.items(): if "_temporal" in k: continue if k not in state_dict: raise KeyError(f"3d state_dict key {k} does not exist in 2d model") ### choice 1, init temporal attention with spatial attention weight ''' for k, v in state_dict_3d.items(): if k not in state_dict: if "_temporal" in k: # org random init temporal attention #continue #print("init temporal attention with sd spatial attention weight") if 'conv' in k: ## may be continue #state_dict_3d.update({k: v}) continue else: copyk = k copyk = copyk.replace('_temporal.', '1.') state_dict_3d.update({k: state_dict[copyk]}) else: raise KeyError(f"3d state_dict key {k} does not exist in 2d model") ''' #### end of choice 1############ state_dict_3d.update(state_dict) self.load_state_dict(state_dict_3d, **kwargs)