from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import nn # from diffusers.utils from diffusers.utils import deprecate, logging from diffusers.utils.import_utils import is_xformers_available from diffusers.models.attention import FeedForward, AdaLayerNorm from diffusers.models.cross_attention import CrossAttention logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_xformers_available(): import xformers import xformers.ops else: xformers = None class LoRALinearLayer(nn.Module): def __init__(self, in_features, out_features, rank=4, stride=1): super().__init__() if rank > min(in_features, out_features): Warning(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}, reset to {min(in_features, out_features)//2}") rank = min(in_features, out_features)//2 self.down = nn.Conv1d(in_features, rank, bias=False, kernel_size=3, stride = stride, padding=1,) self.up = nn.Conv1d(rank, out_features, bias=False, kernel_size=3, padding=1,) nn.init.normal_(self.down.weight, std=1 / rank) # nn.init.zeros_(self.down.bias.data) nn.init.zeros_(self.up.weight) # nn.init.zeros_(self.up.bias.data) if stride > 1: self.skip = nn.AvgPool1d(kernel_size=3, stride=2, padding=1) def forward(self, hidden_states): orig_dtype = hidden_states.dtype dtype = self.down.weight.dtype down_hidden_states = self.down(hidden_states.to(dtype)) up_hidden_states = self.up(down_hidden_states) if hasattr(self, 'skip'): hidden_states=self.skip(hidden_states) return up_hidden_states.to(orig_dtype)+hidden_states class LoRACrossAttnProcessor(nn.Module): def __init__(self, hidden_size, cross_attention_dim=None, rank=4): super().__init__() self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank) def __call__( self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0 ): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) query = attn.head_to_batch_dim(query) encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class LoRAXFormersCrossAttnProcessor(nn.Module): def __init__(self, hidden_size, cross_attention_dim, rank=4): super().__init__() self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank) self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank) self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank) def __call__( self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0 ): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) + scale * self.to_q_lora(hidden_states) query = attn.head_to_batch_dim(query).contiguous() encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) + scale * self.to_k_lora(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) + scale * self.to_v_lora(encoder_hidden_states) key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) + scale * self.to_out_lora(hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states