Spaces:
Configuration error
Configuration error
import random | |
import torch | |
def short_size_scale(images, size): | |
h, w = images.shape[-2:] | |
short, long = (h, w) if h < w else (w, h) | |
scale = size / short | |
long_target = int(scale * long) | |
target_size = (size, long_target) if h < w else (long_target, size) | |
return torch.nn.functional.interpolate( | |
input=images, size=target_size, mode="bilinear", antialias=True | |
) | |
def random_short_side_scale(images, size_min, size_max): | |
size = random.randint(size_min, size_max) | |
return short_size_scale(images, size) | |
def random_crop(images, height, width): | |
image_h, image_w = images.shape[-2:] | |
h_start = random.randint(0, image_h - height) | |
w_start = random.randint(0, image_w - width) | |
return images[:, :, h_start : h_start + height, w_start : w_start + width] | |
def center_crop(images, height, width): | |
# offset_crop(images, 0,0, 200, 0) | |
image_h, image_w = images.shape[-2:] | |
h_start = (image_h - height) // 2 | |
w_start = (image_w - width) // 2 | |
return images[:, :, h_start : h_start + height, w_start : w_start + width] | |
def offset_crop(image, left=0, right=0, top=200, bottom=0): | |
n, c, h, w = image.shape | |
left = min(left, w-1) | |
right = min(right, w - left - 1) | |
top = min(top, h - 1) | |
bottom = min(bottom, h - top - 1) | |
image = image[:, :, top:h-bottom, left:w-right] | |
return image |