Spaces:
Configuration error
Configuration error
from typing import List | |
import os | |
import datetime | |
import numpy as np | |
from PIL import Image | |
import torch | |
import video_diffusion.prompt_attention.ptp_utils as ptp_utils | |
from video_diffusion.common.image_util import save_gif_mp4_folder_type | |
from video_diffusion.prompt_attention.attention_store import AttentionStore | |
import cv2 | |
from IPython.display import display | |
from typing import List, Tuple, Union | |
def aggregate_attention(prompts, attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int): | |
out = [] | |
attention_maps = attention_store.get_average_attention() | |
num_pixels = res ** 2 | |
for location in from_where: | |
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
#print('item',item.shape) | |
if item.dim() == 3: | |
if item.shape[1] == num_pixels: | |
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
out.append(cross_maps) | |
elif item.dim() == 4: | |
t, h, res_sq, token = item.shape | |
if item.shape[2] == num_pixels: | |
cross_maps = item.reshape(len(prompts), t, -1, res, res, item.shape[-1])[select] | |
out.append(cross_maps) | |
out = torch.cat(out, dim=-4) | |
out = out.sum(-4) / out.shape[-4] | |
return out.cpu() | |
def show_cross_attention(tokenizer, prompts, attention_store: AttentionStore, | |
res: int, from_where: List[str], select: int = 0, save_path = None): | |
""" | |
attention_store (AttentionStore): | |
["down", "mid", "up"] X ["self", "cross"] | |
4, 1, 6 | |
head*res*text_token_len = 8*res*77 | |
res=1024 -> 64 -> 1024 | |
res (int): res | |
from_where (List[str]): "up", "down' | |
""" | |
if isinstance(prompts, str): | |
prompts = [prompts,] | |
tokens = tokenizer.encode(prompts[select]) | |
decoder = tokenizer.decode | |
attention_maps = aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
os.makedirs('trash', exist_ok=True) | |
attention_list = [] | |
if attention_maps.dim()==3: attention_maps=attention_maps[None, ...] | |
for j in range(attention_maps.shape[0]): | |
images = [] | |
for i in range(len(tokens)): | |
image = attention_maps[j, :, :, i] | |
image = 255 * image / image.max() | |
image = image.unsqueeze(-1).expand(*image.shape, 3) | |
image = image.numpy().astype(np.uint8) | |
image = np.array(Image.fromarray(image).resize((256, 256))) | |
image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) | |
images.append(image) | |
ptp_utils.view_images(np.stack(images, axis=0), save_path=save_path) | |
atten_j = np.concatenate(images, axis=1) | |
attention_list.append(atten_j) | |
if save_path is not None: | |
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
video_save_path = f'{save_path}/{now}.gif' | |
save_gif_mp4_folder_type(attention_list, video_save_path) | |
return attention_list | |
def tensor_to_pil(image_tensor): | |
# 首先确保tensor在CPU上 | |
image_tensor = image_tensor.cpu() | |
# 将C,H,W转换为H,W,C | |
image_tensor = image_tensor.permute(1, 2, 0) | |
# 正规化到[0,1] | |
image_tensor = (image_tensor - image_tensor.min()) / (image_tensor.max() - image_tensor.min()) | |
# 转换为255范围的uint8 | |
image_array = np.uint8(255 * image_tensor) | |
# 创建PIL图像 | |
image_pil = Image.fromarray(image_array) | |
return image_pil | |
def show_image_relevance(image_relevance, image: Image.Image, relevnace_res=16): | |
# create heatmap from mask on image | |
def show_cam_on_image(img, mask): | |
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) | |
heatmap = np.float32(heatmap) / 255 | |
cam = heatmap + np.float32(img) | |
cam = cam / np.max(cam) | |
return cam | |
image = tensor_to_pil(image) | |
image = image.resize((relevnace_res ** 2, relevnace_res ** 2)) | |
image = np.array(image) | |
image_relevance = image_relevance.reshape(1, 1, image_relevance.shape[-1], image_relevance.shape[-1]) | |
image_relevance = image_relevance.cuda() # because float16 precision interpolation is not supported on cpu | |
image_relevance = torch.nn.functional.interpolate(image_relevance, size=relevnace_res ** 2, mode='bilinear') | |
image_relevance = image_relevance.cpu() # send it back to cpu | |
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min()) | |
image_relevance = image_relevance.reshape(relevnace_res ** 2, relevnace_res ** 2) | |
image = (image - image.min()) / (image.max() - image.min()+1e-8) | |
vis = show_cam_on_image(image, image_relevance) | |
vis = np.uint8(255 * vis) | |
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR) | |
return vis | |
def show_cross_attention_plus_org_img(tokenizer, prompts,org_images, attention_store: AttentionStore, | |
res: int, from_where: List[str], select: int = 0, save_path = None, attention_maps=None): | |
""" | |
attention_store (AttentionStore): | |
["down", "mid", "up"] X ["self", "cross"] | |
4, 1, 6 | |
head*res*text_token_len = 8*res*77 | |
res=1024 -> 64 -> 1024 | |
res (int): res | |
from_where (List[str]): "up", "down' | |
image: f c h w | |
""" | |
if isinstance(prompts, str): | |
prompts = [prompts,] | |
tokens = tokenizer.encode(prompts[select]) | |
decoder = tokenizer.decode | |
if attention_maps is None: | |
print('res',res) | |
attention_maps = aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
else: | |
attention_maps = attention_maps | |
os.makedirs('trash', exist_ok=True) | |
attention_list = [] | |
if attention_maps.dim()==3: attention_maps=attention_maps[None, ...] | |
for j in range(attention_maps.shape[0]): | |
images = [] | |
for i in range(len(tokens)): | |
image = attention_maps[j, :, :, i] | |
orig_image = org_images[j] | |
image = show_image_relevance(image, orig_image) | |
# image = 255 * image / image.max() | |
# image = image.unsqueeze(-1).expand(*image.shape, 3) | |
image = image.astype(np.uint8) | |
image = np.array(Image.fromarray(image).resize((256, 256))) | |
image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) | |
images.append(image) | |
frame_save_path = os.path.join(save_path,f'frame_{j}_cross_attn.jpg') | |
ptp_utils.view_images(np.stack(images, axis=0), save_path=frame_save_path) | |
atten_j = np.concatenate(images, axis=1) | |
attention_list.append(atten_j) | |
if save_path is not None: | |
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
video_save_path = os.path.join(save_path,'cross_attn.gif') | |
save_gif_mp4_folder_type(attention_list, video_save_path, save_gif=False) | |
return attention_list | |
def show_self_attention_comp(attention_store: AttentionStore, res: int, from_where: List[str], | |
max_com=10, select: int = 0): | |
attention_maps = aggregate_attention(attention_store, res, from_where, False, select).numpy().reshape((res ** 2, res ** 2)) | |
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) | |
images = [] | |
for i in range(max_com): | |
image = vh[i].reshape(res, res) | |
image = image - image.min() | |
image = 255 * image / image.max() | |
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) | |
image = Image.fromarray(image).resize((256, 256)) | |
image = np.array(image) | |
images.append(image) | |
ptp_utils.view_images(np.concatenate(images, axis=1)) | |
def view_images(images: Union[np.ndarray, List], | |
num_rows: int = 1, | |
offset_ratio: float = 0.02, | |
display_image: bool = True) -> Image.Image: | |
""" Displays a list of images in a grid. """ | |
if type(images) is list: | |
num_empty = len(images) % num_rows | |
elif images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] | |
num_empty = 0 | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty | |
num_items = len(images) | |
h, w, c = images[0].shape | |
offset = int(h * offset_ratio) | |
num_cols = num_items // num_rows | |
image_ = np.ones((h * num_rows + offset * (num_rows - 1), | |
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 | |
for i in range(num_rows): | |
for j in range(num_cols): | |
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[ | |
i * num_cols + j] | |
pil_img = Image.fromarray(image_) | |
if display_image: | |
display(pil_img) | |
return pil_img | |
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)) -> np.ndarray: | |
h, w, c = image.shape | |
offset = int(h * .2) | |
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
img[:h] = image | |
textsize = cv2.getTextSize(text, font, fontScale=1, thickness=2)[0] | |
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 | |
cv2.putText(img, text, (text_x, text_y), font, 1, text_color, 2) | |
return img | |