XiangpengYang's picture
update all
a043943
raw
history blame
10.4 kB
from typing import Optional, Union, Tuple, List, Callable, Dict
from tqdm.notebook import tqdm
import torch
import math
from typing import List, Tuple, Union
from PIL import Image
import cv2
import numpy as np
import os
import re
import torch
from IPython.display import display
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from .ptp_utils import *
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
import pickle as pkl
import torch.nn.functional as F
import argparse
from sklearn.metrics.cluster import adjusted_rand_score, normalized_mutual_info_score, fowlkes_mallows_score, v_measure_score
transform_train = transforms.Compose([
transforms.ToPILImage(),
])
pca = PCA(n_components=3)
def save_mask(mask, output_name):
mask_image = transform_train(mask.float())
mask_image.save(output_name)
def show_image(image):
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
return image
def cluster2noun_mod(clusters, background_segment_threshold, num_segments, nouns, cross_attention):
REPEAT=clusters.shape[0]/cross_attention.shape[0]
result = {}
result_mask={}
nouns_indices = [index for (index, word) in nouns]
nouns_maps = cross_attention.cpu().numpy()[:, :, [i + 1 for i in nouns_indices]]
nouns_maps = cross_attention.unsqueeze(-1).cpu().numpy()
normalized_nouns_maps = np.zeros_like(nouns_maps).repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
for i in range(nouns_maps.shape[-1]):
curr_noun_map = nouns_maps[:, :, i].repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
normalized_nouns_maps[:, :, i] = (curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
for c in range(num_segments):
cluster_mask = np.zeros_like(clusters)
cluster_mask[clusters == c] = 1
score_maps = [cluster_mask * normalized_nouns_maps[:, :, i] for i in range(len(nouns_indices))]
scores = [score_map.sum() / cluster_mask.sum() for score_map in score_maps]
result[c] = nouns[np.argmax(np.array(scores))] if max(scores) > background_segment_threshold else "BG"
result_mask[c]=cluster_mask
return result, result_mask
def cluster2noun_(clusters, background_segment_threshold, num_segments, nouns, cross_attention, attention_threshold=0.2):
REPEAT = clusters.shape[0] // cross_attention.shape[0]
result = {}
result_mask = {}
print('cross_attention',cross_attention.shape)
# 提取名词索引和对应的注意力图
nouns_indices = [index for (index, word) in nouns]
nouns_maps = cross_attention.cpu().numpy()[:, :, [i + 1 for i in nouns_indices]]
print('nouns_maps', nouns_maps.shape)
normalized_nouns_maps = nouns_maps
#normalized_nouns_maps = np.zeros_like(nouns_maps).repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
# 标准化注意力图并应用阈值
# for i in range(nouns_maps.shape[-1]):
# curr_noun_map = nouns_maps[:, :, i].repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
# normalized_map = (curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
# # 应用阈值,将低于阈值的部分设为 0
# #normalized_map[normalized_map < attention_threshold] = 0
# normalized_nouns_maps[:, :, i] = normalized_map
print('normalized_nouns_maps', normalized_nouns_maps.shape)
#show_normalized_nouns_maps(normalized_nouns_maps, nouns, logdir)
# 用于记录已经分配的单词
assigned_nouns = set()
for c in range(num_segments):
cluster_mask = np.zeros_like(clusters)
cluster_mask[clusters == c] = 1
score_maps = [cluster_mask * normalized_nouns_maps[:, :, i] for i in range(len(nouns_indices))]
scores = [score_map.sum() / cluster_mask.sum() for score_map in score_maps]
# 找出最高分的名词,并确保未被分配过
sorted_scores_indices = np.argsort(scores)[::-1]
assigned_word = None
for idx in sorted_scores_indices:
if scores[idx] > background_segment_threshold and nouns[idx] not in assigned_nouns:
assigned_word = nouns[idx]
assigned_nouns.add(nouns[idx]) # 记录这个单词已分配
break
# 如果没有找到合适的名词,强制分配最高分的未分配名词
if assigned_word is None and len(sorted_scores_indices) > 0:
for idx in sorted_scores_indices:
if nouns[idx] not in assigned_nouns:
assigned_word = nouns[idx]
assigned_nouns.add(nouns[idx]) # 记录这个单词已分配
break
if assigned_word:
result[c] = assigned_word
result_mask[c] = cluster_mask
return result, result_mask
def aggregate_attention( attention_maps,
res: int, from_where: List[str],
is_cross: bool, select: int, prompts,):
out = []
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu(), attention_maps
def cluster(self_attention, num_segments,):
np.random.seed(1)
frames = self_attention.shape[0]
video_clusters = []
for i in range(frames):
per_frame_attention = self_attention[i]
print('per_frame_attention',per_frame_attention.shape)
resolution, feat_dim = per_frame_attention.shape[0], per_frame_attention.shape[-1]
attn = per_frame_attention.cpu().numpy().reshape(resolution ** 2, feat_dim)
kmeans = KMeans(n_clusters=num_segments, n_init=10).fit(attn)
clusters = kmeans.labels_
clusters = clusters.reshape(resolution, resolution)
video_clusters.append(clusters)
return video_clusters
def run_clusters(avg_dict, resolution, dict_key, save_path, special_name, num_segments):
video_clusters = cluster(avg_dict[dict_key][resolution], num_segments,)
npy_name=f'cluster_{dict_key}_{resolution}_{special_name}.npy'
np.save(os.path.join(save_path, npy_name), video_clusters)
for i in range(len(video_clusters)):
clusters = video_clusters[i]
output_name=f'cluster_{dict_key}_{resolution}_{i}.png'
plt.imshow(clusters)
plt.axis('off')
plt.savefig(os.path.join(save_path, output_name), bbox_inches='tight', pad_inches=0)
def read_pkl(path,):
with open(path,'rb') as f:
dict_ = pkl.load(f)
return dict_
def draw_pca(avg_dict, resolution, dict_key, save_path, special_name):
RESOLUTION=resolution
if avg_dict[dict_key][RESOLUTION].__len__() == 0:
return
before_pca = avg_dict[dict_key][RESOLUTION]
frames = before_pca.shape[0]
for i in range(frames):
frame = before_pca[i]
print('frame',frame.dtype)
if isinstance(frame, torch.Tensor):
frame = frame.reshape(RESOLUTION * RESOLUTION, -1).cpu().numpy()
else:
frame = frame.reshape(RESOLUTION * RESOLUTION, -1)
pca.fit(frame)
after_pca = pca.transform(frame)
after_pca = after_pca.reshape(RESOLUTION,RESOLUTION,-1)
pca_img_min = after_pca.min(axis=(0, 1))
pca_img_max = after_pca.max(axis=(0, 1))
pca_img = (after_pca - pca_img_min) / (pca_img_max - pca_img_min)
output_name=f'pca_{dict_key}_{resolution}_{i}.png'
pca_img = Image.fromarray((pca_img * 255).astype(np.uint8))
pca_img=pca_img.resize((512,512))
pca_img.save(os.path.join(save_path, output_name))
def image_normalize(numpy_array, save_path,output_name):
numpy_array=numpy_array.cpu().numpy()
img_min = numpy_array.min()
img_max = numpy_array.max()
normalize_array = (numpy_array - img_min) / (img_max - img_min)
plt.imshow(normalize_array)
plt.axis('off')
plt.savefig(os.path.join(save_path, output_name), bbox_inches='tight', pad_inches=0)
def cross_cosine_with_name(resolution, inv_avg_dict, denoise_avg_dict, indice, save_path, save_crossattn=False, noun_name = ''):
inv_cross_attn = inv_avg_dict['attn'][resolution][:,:,indice]
denoise_cross_attn = denoise_avg_dict['attn'][resolution][:,:,indice]
if save_crossattn:
image_normalize(inv_cross_attn, save_path, f'crossattn_{resolution}_inv_{noun_name}.png')
image_normalize(denoise_cross_attn, save_path, f'crossattn_{resolution}_denoise_{noun_name}.png')
return F.cosine_similarity(inv_cross_attn.reshape(1,-1), denoise_cross_attn.reshape(1,-1))
def cross_cosine(resolution, inv_avg_dict, denoise_avg_dict, indice, save_path, save_crossattn=False,):
inv_cross_attn = inv_avg_dict['attn'][resolution][:,:,indice]
denoise_cross_attn = denoise_avg_dict['attn'][resolution][:,:,indice]
if save_crossattn:
image_normalize(inv_cross_attn, save_path, f'crossattn_{resolution}_inv.png')
image_normalize(denoise_cross_attn, save_path, f'crossattn_{resolution}_denoise.png')
return F.cosine_similarity(inv_cross_attn.reshape(1,-1), denoise_cross_attn.reshape(1,-1))
def save_crossattn(input_path, caption, inv_cross_avg_dict, denoise_cross_avg_dict, results_folder, RES=16):
org_image = Image.open(input_path).convert("RGB")
prompts=["<|startoftext|>",] + caption.split(' ') + ["<|endoftext|>",]
inv_crossattn = inv_cross_avg_dict['attn'][RES]
denoise_crossattn = denoise_cross_avg_dict['attn'][RES]
attn_img1, mask_img1, _ = show_cross_attention_plus_orig_img(prompts, inv_crossattn, orig_image=org_image)
attn_img2, mask_img2, _ = show_cross_attention_plus_orig_img(prompts, denoise_crossattn, orig_image=org_image)
attn_img1.save(os.path.join(results_folder,'crossattn_inv.png'))
attn_img2.save(os.path.join(results_folder,'crossattn_denoise.png'))
mask_img1.save(os.path.join(results_folder,'crossattn_inv_mask.png'))
mask_img2.save(os.path.join(results_folder,'crossattn_denoise_mask.png'))