Spaces:
Configuration error
Configuration error
# code mostly taken from https://github.com/huggingface/diffusers | |
import os | |
import glob | |
import json | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import copy | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers import ModelMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from .unet_3d_blocks import ( | |
CrossAttnDownBlockPseudo3D, | |
CrossAttnUpBlockPseudo3D, | |
DownBlockPseudo3D, | |
UNetMidBlockPseudo3DCrossAttn, | |
UpBlockPseudo3D, | |
get_down_block, | |
get_up_block, | |
) | |
from .resnet import PseudoConv3d | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNetPseudo3DConditionOutput(BaseOutput): | |
sample: torch.FloatTensor | |
class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlockPseudo3D", | |
"CrossAttnDownBlockPseudo3D", | |
"CrossAttnDownBlockPseudo3D", | |
"DownBlockPseudo3D", | |
), | |
mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn", | |
up_block_types: Tuple[str] = ( | |
"UpBlockPseudo3D", | |
"CrossAttnUpBlockPseudo3D", | |
"CrossAttnUpBlockPseudo3D", | |
"CrossAttnUpBlockPseudo3D", | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
**kwargs | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
if 'temporal_downsample' in kwargs and kwargs['temporal_downsample'] is True: | |
kwargs['temporal_downsample_time'] = 3 | |
self.temporal_downsample_time = kwargs.get('temporal_downsample_time', 0) | |
# input | |
self.conv_in = PseudoConv3d(in_channels, block_out_channels[0], | |
kernel_size=3, padding=(1, 1), model_config=kwargs) | |
# time | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
kwargs_copy=copy.deepcopy(kwargs) | |
temporal_downsample_i = ((i >= (len(down_block_types)-self.temporal_downsample_time)) | |
and (not is_final_block)) | |
kwargs_copy.update({'temporal_downsample': temporal_downsample_i} ) | |
# kwargs_copy.update({'SparseCausalAttention_index': temporal_downsample_i} ) | |
if temporal_downsample_i: | |
print(f'Initialize model temporal downsample at layer {i}') | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_temporal=True, | |
model_config=kwargs_copy | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlockPseudo3DCrossAttn": | |
self.mid_block = UNetMidBlockPseudo3DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
use_temporal=True, ##not sure check org fatezero | |
model_config=kwargs | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
kwargs_copy=copy.deepcopy(kwargs) | |
kwargs_copy.update({'temporal_downsample': | |
i < (self.temporal_downsample_time-1)}) | |
if i < (self.temporal_downsample_time-1): | |
print(f'Initialize model temporal updample at layer {i}') | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_temporal=True, | |
model_config=kwargs_copy | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = nn.SiLU() | |
self.conv_out = PseudoConv3d(block_out_channels[0], out_channels, | |
kernel_size=3, padding=1, model_config=kwargs) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_slicable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_slicable_dims(module) | |
num_slicable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_slicable_layers * [1] | |
slice_size = ( | |
num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
) | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance( | |
module, | |
(CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D), | |
): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, # None | |
attention_mask: Optional[torch.Tensor] = None, # None | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[UNetPseudo3DConditionOutput, Tuple]: | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: # None | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: # False | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**kwargs, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
new_down_block_res_samples += (down_block_res_sample + down_block_additional_residual,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
sample = self.mid_block( | |
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, | |
**kwargs, | |
) | |
if mid_block_additional_residual is not None: | |
sample = sample + mid_block_additional_residual | |
# for i in down_block_res_samples: print(i.shape) | |
# torch.Size([1, 320, 16, 64, 64]) | |
# torch.Size([1, 320, 16, 64, 64]) | |
# torch.Size([1, 320, 16, 64, 64]) | |
# torch.Size([1, 320, 8, 32, 32]) | |
# torch.Size([1, 640, 8, 32, 32]) | |
# torch.Size([1, 640, 8, 32, 32]) | |
# torch.Size([1, 640, 4, 16, 16]) | |
# torch.Size([1, 1280, 4, 16, 16]) | |
# torch.Size([1, 1280, 4, 16, 16]) | |
# torch.Size([1, 1280, 2, 8, 8]) | |
# torch.Size([1, 1280, 2, 8, 8]) | |
# torch.Size([1, 1280, 2, 8, 8]) | |
# 5. up | |
# sample torch.Size([1, 1280, 37, 32, 32]) | |
# sample torch.Size([1, 640, 37, 64, 64]) | |
# sample torch.Size([1, 320, 37, 64, 64]) | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
**kwargs, | |
) | |
# if up_block_additional_residual is not None and sample.shape[-1] == 32: | |
# sample = sample + up_block_additional_residual.unsqueeze(0) ### dift embedding for key point | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNetPseudo3DConditionOutput(sample=sample) | |
def from_2d_model(cls, model_path, model_config): | |
config_path = os.path.join(model_path, "config.json") | |
if not os.path.isfile(config_path): | |
raise RuntimeError(f"{config_path} does not exist") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
config.pop("_class_name") | |
config.pop("_diffusers_version") | |
block_replacer = { | |
"CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D", | |
"DownBlock2D": "DownBlockPseudo3D", | |
"UpBlock2D": "UpBlockPseudo3D", | |
"CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D", | |
} | |
def convert_2d_to_3d_block(block): | |
return block_replacer[block] if block in block_replacer else block | |
config["down_block_types"] = [ | |
convert_2d_to_3d_block(block) for block in config["down_block_types"] | |
] | |
config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]] | |
if model_config is not None: | |
config.update(model_config) | |
model = cls(**config) | |
state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin")) | |
if state_dict_path_condidates: | |
state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu") | |
model.load_2d_state_dict(state_dict=state_dict) | |
return model | |
def load_2d_state_dict(self, state_dict, **kwargs): | |
state_dict_3d = self.state_dict() | |
# for k,v in state_dict_3d.items(): | |
# print("new 3d model key:",k) | |
# for k,v in state_dict.items(): | |
# print("org 2d model key:",k) | |
# exit() | |
for k, v in state_dict.items(): | |
if k not in state_dict_3d: | |
raise KeyError(f"2d state_dict key {k} does not exist in 3d model") | |
elif v.shape != state_dict_3d[k].shape: | |
raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}") | |
for k, v in state_dict_3d.items(): | |
if "_temporal" in k: | |
continue | |
if k not in state_dict: | |
raise KeyError(f"3d state_dict key {k} does not exist in 2d model") | |
### choice 1, init temporal attention with spatial attention weight | |
''' | |
for k, v in state_dict_3d.items(): | |
if k not in state_dict: | |
if "_temporal" in k: | |
# org random init temporal attention | |
#continue | |
#print("init temporal attention with sd spatial attention weight") | |
if 'conv' in k: | |
## may be continue | |
#state_dict_3d.update({k: v}) | |
continue | |
else: | |
copyk = k | |
copyk = copyk.replace('_temporal.', '1.') | |
state_dict_3d.update({k: state_dict[copyk]}) | |
else: | |
raise KeyError(f"3d state_dict key {k} does not exist in 2d model") | |
''' | |
#### end of choice 1############ | |
state_dict_3d.update(state_dict) | |
self.load_state_dict(state_dict_3d, **kwargs) |