VideoGrain / video_diffusion /models /unet_3d_condition.py
XiangpengYang's picture
first commit
5602c9a
raw
history blame
23.4 kB
# code mostly taken from https://github.com/huggingface/diffusers
import os
import glob
import json
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import copy
import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers import ModelMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from .unet_3d_blocks import (
CrossAttnDownBlockPseudo3D,
CrossAttnUpBlockPseudo3D,
DownBlockPseudo3D,
UNetMidBlockPseudo3DCrossAttn,
UpBlockPseudo3D,
get_down_block,
get_up_block,
)
from .resnet import PseudoConv3d
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNetPseudo3DConditionOutput(BaseOutput):
sample: torch.FloatTensor
class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlockPseudo3D",
"CrossAttnDownBlockPseudo3D",
"CrossAttnDownBlockPseudo3D",
"DownBlockPseudo3D",
),
mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn",
up_block_types: Tuple[str] = (
"UpBlockPseudo3D",
"CrossAttnUpBlockPseudo3D",
"CrossAttnUpBlockPseudo3D",
"CrossAttnUpBlockPseudo3D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: Union[int, Tuple[int]] = 8,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
**kwargs
):
super().__init__()
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
if 'temporal_downsample' in kwargs and kwargs['temporal_downsample'] is True:
kwargs['temporal_downsample_time'] = 3
self.temporal_downsample_time = kwargs.get('temporal_downsample_time', 0)
# input
self.conv_in = PseudoConv3d(in_channels, block_out_channels[0],
kernel_size=3, padding=(1, 1), model_config=kwargs)
# time
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
kwargs_copy=copy.deepcopy(kwargs)
temporal_downsample_i = ((i >= (len(down_block_types)-self.temporal_downsample_time))
and (not is_final_block))
kwargs_copy.update({'temporal_downsample': temporal_downsample_i} )
# kwargs_copy.update({'SparseCausalAttention_index': temporal_downsample_i} )
if temporal_downsample_i:
print(f'Initialize model temporal downsample at layer {i}')
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_temporal=True,
model_config=kwargs_copy
)
self.down_blocks.append(down_block)
# mid
if mid_block_type == "UNetMidBlockPseudo3DCrossAttn":
self.mid_block = UNetMidBlockPseudo3DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
use_temporal=True, ##not sure check org fatezero
model_config=kwargs
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
kwargs_copy=copy.deepcopy(kwargs)
kwargs_copy.update({'temporal_downsample':
i < (self.temporal_downsample_time-1)})
if i < (self.temporal_downsample_time-1):
print(f'Initialize model temporal updample at layer {i}')
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_temporal=True,
model_config=kwargs_copy
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
)
self.conv_act = nn.SiLU()
self.conv_out = PseudoConv3d(block_out_channels[0], out_channels,
kernel_size=3, padding=1, model_config=kwargs)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = (
num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
)
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(
module,
(CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D),
):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None, # None
attention_mask: Optional[torch.Tensor] = None, # None
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
return_dict: bool = True,
**kwargs,
) -> Union[UNetPseudo3DConditionOutput, Tuple]:
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None: # None
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample: # False
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
new_down_block_res_samples += (down_block_res_sample + down_block_additional_residual,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask,
**kwargs,
)
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
# for i in down_block_res_samples: print(i.shape)
# torch.Size([1, 320, 16, 64, 64])
# torch.Size([1, 320, 16, 64, 64])
# torch.Size([1, 320, 16, 64, 64])
# torch.Size([1, 320, 8, 32, 32])
# torch.Size([1, 640, 8, 32, 32])
# torch.Size([1, 640, 8, 32, 32])
# torch.Size([1, 640, 4, 16, 16])
# torch.Size([1, 1280, 4, 16, 16])
# torch.Size([1, 1280, 4, 16, 16])
# torch.Size([1, 1280, 2, 8, 8])
# torch.Size([1, 1280, 2, 8, 8])
# torch.Size([1, 1280, 2, 8, 8])
# 5. up
# sample torch.Size([1, 1280, 37, 32, 32])
# sample torch.Size([1, 640, 37, 64, 64])
# sample torch.Size([1, 320, 37, 64, 64])
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
**kwargs,
)
# if up_block_additional_residual is not None and sample.shape[-1] == 32:
# sample = sample + up_block_additional_residual.unsqueeze(0) ### dift embedding for key point
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return UNetPseudo3DConditionOutput(sample=sample)
@classmethod
def from_2d_model(cls, model_path, model_config):
config_path = os.path.join(model_path, "config.json")
if not os.path.isfile(config_path):
raise RuntimeError(f"{config_path} does not exist")
with open(config_path, "r") as f:
config = json.load(f)
config.pop("_class_name")
config.pop("_diffusers_version")
block_replacer = {
"CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D",
"DownBlock2D": "DownBlockPseudo3D",
"UpBlock2D": "UpBlockPseudo3D",
"CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D",
}
def convert_2d_to_3d_block(block):
return block_replacer[block] if block in block_replacer else block
config["down_block_types"] = [
convert_2d_to_3d_block(block) for block in config["down_block_types"]
]
config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]]
if model_config is not None:
config.update(model_config)
model = cls(**config)
state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin"))
if state_dict_path_condidates:
state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu")
model.load_2d_state_dict(state_dict=state_dict)
return model
def load_2d_state_dict(self, state_dict, **kwargs):
state_dict_3d = self.state_dict()
# for k,v in state_dict_3d.items():
# print("new 3d model key:",k)
# for k,v in state_dict.items():
# print("org 2d model key:",k)
# exit()
for k, v in state_dict.items():
if k not in state_dict_3d:
raise KeyError(f"2d state_dict key {k} does not exist in 3d model")
elif v.shape != state_dict_3d[k].shape:
raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}")
for k, v in state_dict_3d.items():
if "_temporal" in k:
continue
if k not in state_dict:
raise KeyError(f"3d state_dict key {k} does not exist in 2d model")
### choice 1, init temporal attention with spatial attention weight
'''
for k, v in state_dict_3d.items():
if k not in state_dict:
if "_temporal" in k:
# org random init temporal attention
#continue
#print("init temporal attention with sd spatial attention weight")
if 'conv' in k:
## may be continue
#state_dict_3d.update({k: v})
continue
else:
copyk = k
copyk = copyk.replace('_temporal.', '1.')
state_dict_3d.update({k: state_dict[copyk]})
else:
raise KeyError(f"3d state_dict key {k} does not exist in 2d model")
'''
#### end of choice 1############
state_dict_3d.update(state_dict)
self.load_state_dict(state_dict_3d, **kwargs)