Spaces:
Configuration error
Configuration error
# code mostly taken from https://github.com/huggingface/diffusers | |
from dataclasses import dataclass | |
from typing import Optional, Callable | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers import ModelMixin | |
from diffusers.models.attention import FeedForward, AdaLayerNorm | |
from diffusers.models.cross_attention import CrossAttention | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange | |
import numpy as np | |
import os | |
from PIL import Image | |
import glob | |
class SpatioTemporalTransformerModelOutput(BaseOutput): | |
"""torch.FloatTensor of shape [batch x channel x frames x height x width]""" | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
use_temporal: bool = True, | |
model_config: dict = {}, | |
**transformer_kwargs, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
SpatioTemporalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
use_temporal=use_temporal, | |
model_config=model_config, | |
**transformer_kwargs, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward( | |
self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True | |
): | |
# 1. Input | |
clip_length = None | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
clip_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0) | |
else: | |
# To adapt to classifier-free guidance where encoder_hidden_states=2 | |
batch_size = hidden_states.shape[0]//encoder_hidden_states.shape[0] | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(batch_size, 0) | |
*_, h, w = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") # (bf) (hw) c | |
else: | |
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, # [16, 4096, 320] | |
encoder_hidden_states=encoder_hidden_states, # ([1, 77, 768] | |
timestep=timestep, | |
clip_length=clip_length, | |
) | |
# 3. Output | |
if not self.use_linear_projection: | |
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
output = hidden_states + residual | |
if is_video: | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length) | |
if not return_dict: | |
return (output,) | |
return SpatioTemporalTransformerModelOutput(sample=output) | |
import copy | |
class SpatioTemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
use_sparse_causal_attention: bool = True, | |
use_temporal:bool = False, | |
temporal_attention_position: str = "after_feedforward", | |
model_config: dict = {} | |
): | |
super().__init__() | |
self.use_temporal=use_temporal | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.use_sparse_causal_attention = use_sparse_causal_attention | |
# For safety, freeze the model_config | |
self.model_config = copy.deepcopy(model_config) | |
if 'least_sc_channel' in model_config: | |
if dim< model_config['least_sc_channel']: | |
self.model_config['SparseCausalAttention_index'] = [] | |
self.temporal_attention_position = temporal_attention_position | |
temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"] | |
if temporal_attention_position not in temporal_attention_positions: | |
raise ValueError( | |
f"`temporal_attention_position` must be one of {temporal_attention_positions}" | |
) | |
# 1. Spatial-Attn | |
# spatial_attention = SparseCausalAttention if use_sparse_causal_attention else CrossAttention | |
# self.attn1 = spatial_attention( | |
# query_dim=dim, | |
# heads=num_attention_heads, | |
# dim_head=attention_head_dim, | |
# dropout=dropout, | |
# bias=attention_bias, | |
# cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
# upcast_attention=upcast_attention, | |
# ) | |
# is a self-attention | |
# Fully | |
self.attn1 = IndividualAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
else: | |
self.attn2 = None | |
self.norm2 = None | |
# 3. Temporal-Attn | |
if use_temporal: | |
self.attn_temporal = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data) # initialize as an identity function | |
self.norm_temporal = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
else: | |
self.attn_temporal=None | |
# efficient_attention_backward_cutlass is not implemented for large channels | |
self.use_xformers = (dim <= 320) or "3090" not in torch.cuda.get_device_name(0) | |
# 4. Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool,attention_op: Optional[Callable] = None): | |
if not is_xformers_available(): | |
print("Here is how to install it") | |
raise ModuleNotFoundError( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers", | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
" available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
if use_memory_efficient_attention_xformers is True: | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
else: | |
pass | |
except Exception as e: | |
raise e | |
# self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
# self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
# self.attn_temporal._use_memory_efficient_attention_xformers = ( | |
# use_memory_efficient_attention_xformers | |
# ), # FIXME: enabling this raises CUDA ERROR. Gotta dig in. | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
attention_mask=None, | |
clip_length=None, | |
): | |
# 1. Self-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
kwargs = dict( | |
hidden_states=norm_hidden_states, | |
attention_mask=attention_mask, | |
) | |
if self.only_cross_attention: | |
kwargs.update(encoder_hidden_states=encoder_hidden_states) | |
if self.use_sparse_causal_attention: | |
kwargs.update(clip_length=clip_length) | |
if 'SparseCausalAttention_index' in self.model_config.keys(): | |
kwargs.update(SparseCausalAttention_index = self.model_config['SparseCausalAttention_index']) | |
hidden_states = hidden_states + self.attn1(**kwargs) | |
if clip_length is not None and self.temporal_attention_position == "after_spatial": | |
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
# print('hidden_states after 1 self attention',hidden_states.shape) | |
if self.attn2 is not None: | |
# 2. Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
# print('norm_hidden_states',norm_hidden_states.shape) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, # [16, 4096, 320] | |
encoder_hidden_states=encoder_hidden_states, # [1, 77, 768] | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
if clip_length is not None and self.temporal_attention_position == "after_cross" and self.attn_temporal is not None: | |
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
# 3. Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# if clip_length is not None and self.temporal_attention_position == "after_feedforward" and self.attn_temporal is not None: | |
# hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
return hidden_states | |
def apply_temporal_attention(self, hidden_states, timestep, clip_length): | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length) | |
norm_hidden_states = ( | |
self.norm_temporal(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm_temporal(hidden_states) | |
) | |
hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class IndividualAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
# TODO attention_mask | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, clip_length=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) # (bf) x d(hw) x c | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
curr_frame_index = torch.arange(clip_length) | |
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length) | |
key = key[:, curr_frame_index] | |
key = rearrange(key, "b f d c -> (b f) d c") | |
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length) | |
value = value[:, curr_frame_index] | |
value = rearrange(value, "b f d c -> (b f) d c") | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
clip_length: int = None, | |
SparseCausalAttention_index: list = [-1, 'first'] #list = ['anchor_interval8',0] #list = [0] #list = [-1, 'first','dynamic'] | |
): | |
if ( | |
self.added_kv_proj_dim is not None | |
or encoder_hidden_states is not None | |
or attention_mask is not None | |
): | |
raise NotImplementedError | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
if clip_length is not None: | |
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length) | |
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length) | |
# *********************** Start of Spatial-temporal attention ********** | |
frame_index_list = [] | |
# print(f'SparseCausalAttention_index {str(SparseCausalAttention_index)}') | |
if len(SparseCausalAttention_index) > 0: | |
for index in SparseCausalAttention_index: | |
if isinstance(index, str): | |
if index == 'first': | |
frame_index = [0] * clip_length | |
if index == 'last': | |
frame_index = [clip_length-1] * clip_length | |
if (index == 'mid') or (index == 'middle'): | |
frame_index = [int(clip_length-1)//2] * clip_length | |
if index == "dynamic": | |
frame_index = generate_dynamic_window_index() | |
if index == "anchor_interval8": | |
frame_index = generate_fix_anchor_frames(clip_length,8) | |
else: | |
assert isinstance(index, int), 'relative index must be int' | |
frame_index = torch.arange(clip_length) + index | |
frame_index = frame_index.clip(0, clip_length-1) | |
if isinstance(frame_index[0], list): | |
frame_index_list = frame_index | |
else: | |
frame_index_list.append(frame_index) | |
# print("frame_index_list",frame_index_list) | |
# print("key before concat",key.shape) #[1, frame, 4096, 320] | |
key = torch.cat([ key[:, frame_index] for frame_index in frame_index_list | |
], dim=2) | |
value = torch.cat([ value[:, frame_index] for frame_index in frame_index_list | |
], dim=2) | |
# *********************** End of Spatial-temporal attention ********** | |
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length) | |
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention( | |
query, key, value, hidden_states.shape[1], dim, attention_mask | |
) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
class FullyFrameAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias=False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self._slice_size = heads | |
# self._slice_size = None | |
self._use_memory_efficient_attention_xformers = False | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
else: | |
self.group_norm = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def set_attention_slice(self, slice_size): | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
self._slice_size = slice_size | |
def _attention(self, query, key, value, attention_mask=None): | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
attention_scores = torch.baddbmm( | |
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
query, | |
key.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attention_scores = attention_scores + attention_mask | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
# cast back to the original dtype | |
attention_probs = attention_probs.to(value.dtype) | |
# compute attention output | |
hidden_states = torch.bmm(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
query_slice = query[start_idx:end_idx] | |
key_slice = key[start_idx:end_idx] | |
if self.upcast_attention: | |
query_slice = query_slice.float() | |
key_slice = key_slice.float() | |
attn_slice = torch.baddbmm( | |
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
query_slice, | |
key_slice.transpose(-1, -2), | |
beta=0, | |
alpha=self.scale, | |
) | |
if attention_mask is not None: | |
attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
if self.upcast_softmax: | |
attn_slice = attn_slice.float() | |
attn_slice = attn_slice.softmax(dim=-1) | |
# cast back to the original dtype | |
attn_slice = attn_slice.to(value.dtype) | |
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
# TODO attention_mask | |
query = query.contiguous() | |
key = key.contiguous() | |
value = value.contiguous() | |
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, clip_length=None, inter_frame=False): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) # (bf) x d(hw) x c | |
dim = query.shape[-1] | |
# All frames | |
query = rearrange(query, "(b f) d c -> b (f d) c", f=clip_length) | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
if inter_frame: | |
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]] | |
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]] | |
key = rearrange(key, "b f d c -> b (f d) c",) | |
value = rearrange(value, "b f d c -> b (f d) c") | |
else: | |
# All frames | |
key = rearrange(key, "(b f) d c -> b (f d) c", f=clip_length) | |
value = rearrange(value, "(b f) d c -> b (f d) c", f=clip_length) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
# All frames | |
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=clip_length) | |
return hidden_states | |