Spaces:
Configuration error
Configuration error
File size: 26,824 Bytes
5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import os
import math
import textwrap
import imageio
import numpy as np
from typing import Sequence
import requests
import cv2
from PIL import Image, ImageDraw, ImageFont
import torch
from torchvision import transforms
from einops import rearrange
import torchvision
import imageio
import torchvision.transforms.functional as F
import random
from scipy.ndimage import binary_dilation
import sys
IMAGE_EXTENSION = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp", ".JPEG")
FONT_URL = "https://raw.github.com/googlefonts/opensans/main/fonts/ttf/OpenSans-Regular.ttf"
FONT_PATH = "./docs/OpenSans-Regular.ttf"
np.random.seed(200)
_palette = ((np.random.random((3*255))*0.7+0.3)*255).astype(np.uint8).tolist()
_palette = [0,0,0]+_palette
def save_prediction(pred_mask,output_dir,file_name):
save_mask = Image.fromarray(pred_mask.astype(np.uint8))
save_mask = save_mask.convert(mode='P')
save_mask.putpalette(_palette)
save_mask.save(os.path.join(output_dir,file_name))
def colorize_mask(pred_mask):
save_mask = Image.fromarray(pred_mask.astype(np.uint8))
save_mask = save_mask.convert(mode='P')
save_mask.putpalette(_palette)
save_mask = save_mask.convert(mode='RGB')
return np.array(save_mask)
def draw_mask(img, mask, alpha=0.5, id_countour=False):
img_mask = np.zeros_like(img)
img_mask = img
if id_countour:
# very slow ~ 1s per image
obj_ids = np.unique(mask)
obj_ids = obj_ids[obj_ids!=0]
for id in obj_ids:
# Overlay color on binary mask
if id <= 255:
color = _palette[id*3:id*3+3]
else:
color = [0,0,0]
foreground = img * (1-alpha) + np.ones_like(img) * alpha * np.array(color)
binary_mask = (mask == id)
# Compose image
img_mask[binary_mask] = foreground[binary_mask]
countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask
img_mask[countours, :] = 0
else:
binary_mask = (mask!=0)
countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask
foreground = img*(1-alpha)+colorize_mask(mask)*alpha
img_mask[binary_mask] = foreground[binary_mask]
img_mask[countours,:] = 0
return img_mask.astype(img.dtype)
def pad(image: Image.Image, top=0, right=0, bottom=0, left=0, color=(255, 255, 255)) -> Image.Image:
new_image = Image.new(image.mode, (image.width + right + left, image.height + top + bottom), color)
new_image.paste(image, (left, top))
return new_image
def download_font_opensans(path=FONT_PATH):
font_url = FONT_URL
response = requests.get(font_url)
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "wb") as f:
f.write(response.content)
def annotate_image_with_font(image: Image.Image, text: str, font: ImageFont.FreeTypeFont) -> Image.Image:
image_w = image.width
_, _, text_w, text_h = font.getbbox(text)
line_size = math.floor(len(text) * image_w / text_w)
lines = textwrap.wrap(text, width=line_size)
padding = text_h * len(lines)
image = pad(image, top=padding + 3)
ImageDraw.Draw(image).text((0, 0), "\n".join(lines), fill=(0, 0, 0), font=font)
return image
def annotate_image(image: Image.Image, text: str, font_size: int = 15):
if not os.path.isfile(FONT_PATH):
download_font_opensans()
font = ImageFont.truetype(FONT_PATH, size=font_size)
return annotate_image_with_font(image=image, text=text, font=font)
def make_grid(images: Sequence[Image.Image], rows=None, cols=None) -> Image.Image:
if isinstance(images[0], np.ndarray):
images = [Image.fromarray(i) for i in images]
if rows is None:
assert cols is not None
rows = math.ceil(len(images) / cols)
else:
cols = math.ceil(len(images) / rows)
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, image in enumerate(images):
if image.size != (w, h):
image = image.resize((w, h))
grid.paste(image, box=(i % cols * w, i // cols * h))
return grid
def save_images_as_gif(
images: Sequence[Image.Image],
save_path: str,
loop=0,
duration=100,
optimize=False,
) -> None:
images[0].save(
save_path,
save_all=True,
append_images=images[1:],
optimize=optimize,
loop=loop,
duration=duration,
)
def save_images_as_mp4(
images: Sequence[Image.Image],
save_path: str,
) -> None:
writer_edit = imageio.get_writer(
save_path,
fps=10)
for i in images:
init_image = i.convert("RGB")
writer_edit.append_data(np.array(init_image))
writer_edit.close()
def save_tensor_images_and_video(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=10):
os.makedirs(path, exist_ok=True)
# Rearrange video tensor for easier processing
videos = rearrange(videos, "b c t h w -> t b c h w")
# Lists to store each frame for saving as images and creating a video
frame_list_for_images = []
for i, x in enumerate(videos):
# Create a grid of images for this frame
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # Rescale from [-1, 1] to [0, 1]
x = (x * 255).numpy().astype(np.uint8)
# Save individual frame as image
save_path_image = os.path.join(path, f"{i}.jpg")
imageio.imsave(save_path_image, x)
# Append to frame lists
frame_list_for_images.append(x)
# Save the frames as a video
save_path_video = os.path.join(path, "control.mp4")
imageio.mimwrite(save_path_video, frame_list_for_images, fps=fps)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def save_images_as_folder(
images: Sequence[Image.Image],
save_path: str,
) -> None:
os.makedirs(save_path, exist_ok=True)
for index, image in enumerate(images):
init_image = image
if len(np.array(init_image).shape) == 3:
cv2.imwrite(os.path.join(save_path, f"{index:05d}.jpg"), np.array(init_image)[:, :, ::-1])
else:
cv2.imwrite(os.path.join(save_path, f"{index:05d}.jpg"), np.array(init_image))
def log_infer_samples(
infer_dataloader,
save_path,
num_batch: int = 4,
fps: int = 8,
save_input=True,
):
infer_samples = []
infer_masks = []
infer_merge_masks = []
for idx, batch in enumerate(infer_dataloader):
if idx >= num_batch:
break
infer_samples.append(batch["images"])
infer_masks.append(batch["layouts"])
infer_merge_masks.append(batch["masks"])
infer_samples = torch.cat(infer_samples).numpy()
_,_,frames,height,width = infer_samples.shape
infer_samples = rearrange(infer_samples, "b c f h w -> b f h w c")
print('infer_samples',infer_samples.shape)
infer_samples = (infer_samples * 0.5 + 0.5).clip(0, 1)
# infer_samples = numpy_batch_seq_to_pil(infer_samples)
# infer_samples = [make_grid(images, cols=int(np.ceil(np.sqrt(len(infer_samples))))) for images in zip(*infer_samples)]
infer_merge_masks = torch.cat(infer_merge_masks).unsqueeze(0)
infer_masks = torch.cat(infer_masks)
# f, s, c, h ,w
infer_masks = rearrange(infer_masks.squeeze(2), "f s h w -> f h w s")
# 添加一个全为0的mask到第0维
zero_mask = torch.zeros(infer_masks.shape[0], infer_masks.shape[1], infer_masks.shape[2], 1)
infer_masks = torch.cat((zero_mask, infer_masks), dim=-1)
infer_masks = torch.argmax(infer_masks, axis=-1).numpy()
masked_frames = []
for frame_idx in range(frames):
image = np.array(infer_samples[0][frame_idx])
mask = infer_masks[frame_idx]
mask = cv2.resize(mask, (width, height), interpolation=cv2.INTER_NEAREST)
image = (image * 255).astype(np.uint8)
masked_frame = draw_mask(image, mask, id_countour=False)
masked_frames.append(masked_frame)
#infer_samples_save = rearrange(torch.tensor(infer_samples),'b t h w c -> b c t h w')
if save_input:
infer_samples = numpy_batch_seq_to_pil(infer_samples)
infer_samples = [make_grid(images, cols=int(np.ceil(np.sqrt(len(infer_samples))))) for images in zip(*infer_samples)]
save_gif_mp4_folder_type(infer_samples, os.path.join(save_path, 'input.gif'))
imageio.mimsave(os.path.join(save_path, 'masked_video.mp4'),masked_frames,fps=fps)
save_videos_grid(infer_merge_masks,os.path.join(save_path, 'merged_masks.mp4'), fps=fps)
def log_train_samples(
train_dataloader,
save_path,
num_batch: int = 4,
):
train_samples = []
for idx, batch in enumerate(train_dataloader):
if idx >= num_batch:
break
train_samples.append(batch["images"])
train_samples = torch.cat(train_samples).numpy()
train_samples = rearrange(train_samples, "b c f h w -> b f h w c")
train_samples = (train_samples * 0.5 + 0.5).clip(0, 1)
train_samples = numpy_batch_seq_to_pil(train_samples)
train_samples = [make_grid(images, cols=int(np.ceil(np.sqrt(len(train_samples))))) for images in zip(*train_samples)]
# save_images_as_gif(train_samples, save_path)
save_gif_mp4_folder_type(train_samples, save_path)
def log_train_reg_samples(
train_dataloader,
save_path,
num_batch: int = 4,
):
train_samples = []
for idx, batch in enumerate(train_dataloader):
if idx >= num_batch:
break
train_samples.append(batch["class_images"])
train_samples = torch.cat(train_samples).numpy()
train_samples = rearrange(train_samples, "b c f h w -> b f h w c")
train_samples = (train_samples * 0.5 + 0.5).clip(0, 1)
train_samples = numpy_batch_seq_to_pil(train_samples)
train_samples = [make_grid(images, cols=int(np.ceil(np.sqrt(len(train_samples))))) for images in zip(*train_samples)]
# save_images_as_gif(train_samples, save_path)
save_gif_mp4_folder_type(train_samples, save_path)
def save_gif_mp4_folder_type(images, save_path, save_gif=True):
if isinstance(images[0], np.ndarray):
images = [Image.fromarray(i) for i in images]
elif isinstance(images[0], torch.Tensor):
images = [transforms.ToPILImage()(i.cpu().clone()[0]) for i in images]
save_path_mp4 = save_path.replace('gif', 'mp4')
save_path_folder = save_path.replace('.gif', '')
os.makedirs(save_path_folder, exist_ok=True)
if save_gif: save_images_as_gif(images, save_path)
save_images_as_mp4(images, save_path_mp4)
save_images_as_folder(images, save_path_folder)
# copy from video_diffusion/pipelines/stable_diffusion.py
def numpy_seq_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# copy from diffusers-0.11.1/src/diffusers/pipeline_utils.py
def numpy_batch_seq_to_pil(images):
pil_images = []
for sequence in images:
pil_images.append(numpy_seq_to_pil(sequence))
return pil_images
def downsample_image(image, target_size):
image = Image.fromarray(image)
resized_image = image.resize(target_size, Image.ANTIALIAS)
return np.array(resized_image)
def visualize_check_downsample_keypoints(images, keypoint_data, target_res=(32, 32),final_res=(512, 512)):
# 预处理帧列表
processed_frames = []
# 遍历每一帧
for frame_idx, frame_tensor in enumerate(images):
# 将张量转换为 NumPy 数组
# print("frame",frame_tensor.shape)
frame = frame_tensor.cpu().numpy().astype('uint8')
# 下采样图片
downsampled_frame = downsample_image(frame, target_res)
# 绘制关键点
for keypoint in keypoint_data[frame_idx]:
h_coord, w_coord = keypoint
downsampled_frame[h_coord, w_coord] = [255, 0, 0] # 使用红色标记关键点
# 将处理过的帧重新调整到最终分辨率
final_frame = downsample_image(downsampled_frame, final_res)
# 将处理过的帧添加到列表中
processed_frames.append(final_frame)
# 使用 imageio 保存处理过的帧为视频
output_video_path = "./down_sample_check_hockey.mp4"
imageio.mimsave(output_video_path, processed_frames, fps=10)
"""optical flow and trajectories sampling"""
def preprocess(img1_batch, img2_batch, transforms, height,width):
img1_batch = F.resize(img1_batch, size=[height, width], antialias=False)
img2_batch = F.resize(img2_batch, size=[height, width], antialias=False)
return transforms(img1_batch, img2_batch)
def keys_with_same_value(dictionary):
result = {}
for key, value in dictionary.items():
if value not in result:
result[value] = [key]
else:
result[value].append(key)
conflict_points = {}
for k in result.keys():
if len(result[k]) > 1:
conflict_points[k] = result[k]
return conflict_points
def find_duplicates(input_list):
seen = set()
duplicates = set()
for item in input_list:
if item in seen:
duplicates.add(item)
else:
seen.add(item)
return list(duplicates)
def neighbors_index(point, window_size, H, W):
"""return the spatial neighbor indices"""
t, x, y = point
neighbors = []
for i in range(-window_size, window_size + 1):
for j in range(-window_size, window_size + 1):
if i == 0 and j == 0:
continue
if x + i < 0 or x + i >= H or y + j < 0 or y + j >= W:
continue
neighbors.append((t, x + i, y + j))
return neighbors
@torch.no_grad()
def sample_trajectories(video_path, device,height,width):
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
frames, _, _ = torchvision.io.read_video(str(video_path), output_format="TCHW")
clips = list(range(len(frames)))
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
finished_trajectories = []
current_frames, next_frames = preprocess(frames[clips[:-1]], frames[clips[1:]], transforms, 512,512)
list_of_flows = model(current_frames.to(device), next_frames.to(device))
predicted_flows = list_of_flows[-1]
print('predicted_flows',predicted_flows.shape)
predicted_flows = predicted_flows/512
resolutions = [64, 32, 16, 8]
res = {}
window_sizes = {64: 2,
32: 1,
16: 1,
8: 1}
for resolution in resolutions:
print("="*30)
trajectories = {}
predicted_flow_resolu = torch.round(resolution*torch.nn.functional.interpolate(predicted_flows, scale_factor=(resolution/512, resolution/512)))
T = predicted_flow_resolu.shape[0]+1
H = predicted_flow_resolu.shape[2]
W = predicted_flow_resolu.shape[3]
is_activated = torch.zeros([T, H, W], dtype=torch.bool)
for t in range(T-1):
flow = predicted_flow_resolu[t]
for h in range(H):
for w in range(W):
if not is_activated[t, h, w]:
is_activated[t, h, w] = True
# this point has not been traversed, start new trajectory
x = h + int(flow[1, h, w])
y = w + int(flow[0, h, w])
if x >= 0 and x < H and y >= 0 and y < W:
# trajectories.append([(t, h, w), (t+1, x, y)])
trajectories[(t, h, w)]= (t+1, x, y)
conflict_points = keys_with_same_value(trajectories)
for k in conflict_points:
index_to_pop = random.randint(0, len(conflict_points[k]) - 1)
conflict_points[k].pop(index_to_pop)
for point in conflict_points[k]:
if point[0] != T-1:
trajectories[point]= (-1, -1, -1) # stupid padding with (-1, -1, -1)
active_traj = []
all_traj = []
for t in range(T):
pixel_set = {(t, x//H, x%H):0 for x in range(H*W)}
new_active_traj = []
for traj in active_traj:
if traj[-1] in trajectories:
v = trajectories[traj[-1]]
new_active_traj.append(traj + [v])
pixel_set[v] = 1
else:
all_traj.append(traj)
active_traj = new_active_traj
active_traj+=[[pixel] for pixel in pixel_set if pixel_set[pixel] == 0]
all_traj += active_traj
useful_traj = [i for i in all_traj if len(i)>1]
for idx in range(len(useful_traj)):
if useful_traj[idx][-1] == (-1, -1, -1):
useful_traj[idx] = useful_traj[idx][:-1]
print("how many points in all trajectories for resolution{}?".format(resolution), sum([len(i) for i in useful_traj]))
print("how many points in the video for resolution{}?".format(resolution), T*H*W)
# validate if there are no duplicates in the trajectories
trajs = []
for traj in useful_traj:
trajs = trajs + traj
assert len(find_duplicates(trajs)) == 0, "There should not be duplicates in the useful trajectories."
# check if non-appearing points + appearing points = all the points in the video
all_points = set([(t, x, y) for t in range(T) for x in range(H) for y in range(W)])
left_points = all_points- set(trajs)
print("How many points not in the trajectories for resolution{}?".format(resolution), len(left_points))
for p in list(left_points):
useful_traj.append([p])
print("how many points in all trajectories for resolution{} after pending?".format(resolution), sum([len(i) for i in useful_traj]))
longest_length = max([len(i) for i in useful_traj])
sequence_length = (window_sizes[resolution]*2+1)**2 + longest_length - 1
seqs = []
masks = []
# create a dictionary to facilitate checking the trajectories to which each point belongs.
point_to_traj = {}
for traj in useful_traj:
for p in traj:
point_to_traj[p] = traj
for t in range(T):
for x in range(H):
for y in range(W):
neighbours = neighbors_index((t,x,y), window_sizes[resolution], H, W)
sequence = [(t,x,y)]+neighbours + [(0,0,0) for i in range((window_sizes[resolution]*2+1)**2-1-len(neighbours))]
sequence_mask = torch.zeros(sequence_length, dtype=torch.bool)
sequence_mask[:len(neighbours)+1] = True
traj = point_to_traj[(t,x,y)].copy()
traj.remove((t,x,y))
sequence = sequence + traj + [(0,0,0) for k in range(longest_length-1-len(traj))]
sequence_mask[(window_sizes[resolution]*2+1)**2: (window_sizes[resolution]*2+1)**2 + len(traj)] = True
seqs.append(sequence)
masks.append(sequence_mask)
seqs = torch.tensor(seqs)
masks = torch.stack(masks)
res["traj{}".format(resolution)] = seqs
res["mask{}".format(resolution)] = masks
return res
@torch.no_grad()
def sample_trajectories_new(video_path, device,height,width):
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
frames, _, _ = torchvision.io.read_video(str(video_path), output_format="TCHW")
clips = list(range(len(frames)))
#=============== raft-large estimate forward optical flow============#
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
finished_trajectories = []
current_frames, next_frames = preprocess(frames[clips[:-1]], frames[clips[1:]], transforms, height,width)
list_of_flows = model(current_frames.to(device), next_frames.to(device))
predicted_flows = list_of_flows[-1]
#=============== raft-large estimate forward optical flow============#
predicted_flows = predicted_flows/max(height,width)
resolutions =[(height//8,width//8),(height//16,width//16),(height//32,width//32),(height//64,width//64)]
#resolutions = [64, 32, 16, 8]
res = {}
window_sizes = {(height//8,width//8): 2,
(height//16,width//16): 1,
(height//32,width//32): 1,
(height//64,width//64): 1}
for resolution in resolutions:
print("="*30)
# print(resolution)
# print('window_sizes[resolution]',window_sizes[resolution])
trajectories = {}
height_scale_factor = resolution[0] / height
width_scale_factor = resolution[1] / width
predicted_flow_resolu = torch.round(max(resolution[0], resolution[1])*torch.nn.functional.interpolate(predicted_flows, scale_factor=(height_scale_factor, width_scale_factor)))
T = predicted_flow_resolu.shape[0]+1
H = predicted_flow_resolu.shape[2]
W = predicted_flow_resolu.shape[3]
is_activated = torch.zeros([T, H, W], dtype=torch.bool)
for t in range(T-1):
flow = predicted_flow_resolu[t]
for h in range(H):
for w in range(W):
if not is_activated[t, h, w]:
is_activated[t, h, w] = True
# this point has not been traversed, start new trajectory
x = h + int(flow[1, h, w])
y = w + int(flow[0, h, w])
if x >= 0 and x < H and y >= 0 and y < W:
# trajectories.append([(t, h, w), (t+1, x, y)])
trajectories[(t, h, w)]= (t+1, x, y)
conflict_points = keys_with_same_value(trajectories)
for k in conflict_points:
index_to_pop = random.randint(0, len(conflict_points[k]) - 1)
conflict_points[k].pop(index_to_pop)
for point in conflict_points[k]:
if point[0] != T-1:
trajectories[point]= (-1, -1, -1) # stupid padding with (-1, -1, -1)
active_traj = []
all_traj = []
for t in range(T):
pixel_set = {(t, x//H, x%H):0 for x in range(H*W)}
new_active_traj = []
for traj in active_traj:
if traj[-1] in trajectories:
v = trajectories[traj[-1]]
new_active_traj.append(traj + [v])
pixel_set[v] = 1
else:
all_traj.append(traj)
active_traj = new_active_traj
active_traj+=[[pixel] for pixel in pixel_set if pixel_set[pixel] == 0]
all_traj += active_traj
useful_traj = [i for i in all_traj if len(i)>1]
for idx in range(len(useful_traj)):
if useful_traj[idx][-1] == (-1, -1, -1):
useful_traj[idx] = useful_traj[idx][:-1]
print("how many points in all trajectories for resolution{}?".format(resolution), sum([len(i) for i in useful_traj]))
print("how many points in the video for resolution{}?".format(resolution), T*H*W)
# validate if there are no duplicates in the trajectories
trajs = []
for traj in useful_traj:
trajs = trajs + traj
assert len(find_duplicates(trajs)) == 0, "There should not be duplicates in the useful trajectories."
# check if non-appearing points + appearing points = all the points in the video
all_points = set([(t, x, y) for t in range(T) for x in range(H) for y in range(W)])
left_points = all_points- set(trajs)
print("How many points not in the trajectories for resolution{}?".format(resolution), len(left_points))
for p in list(left_points):
useful_traj.append([p])
print("how many points in all trajectories for resolution{} after pending?".format(resolution), sum([len(i) for i in useful_traj]))
longest_length = max([len(i) for i in useful_traj])
sequence_length = (window_sizes[resolution]*2+1)**2 + longest_length - 1
seqs = []
masks = []
# create a dictionary to facilitate checking the trajectories to which each point belongs.
point_to_traj = {}
for traj in useful_traj:
for p in traj:
point_to_traj[p] = traj
for t in range(T):
for x in range(H):
for y in range(W):
neighbours = neighbors_index((t,x,y), window_sizes[resolution], H, W)
sequence = [(t,x,y)]+neighbours + [(0,0,0) for i in range((window_sizes[resolution]*2+1)**2-1-len(neighbours))]
sequence_mask = torch.zeros(sequence_length, dtype=torch.bool)
sequence_mask[:len(neighbours)+1] = True
traj = point_to_traj[(t,x,y)].copy()
traj.remove((t,x,y))
sequence = sequence + traj + [(0,0,0) for k in range(longest_length-1-len(traj))]
sequence_mask[(window_sizes[resolution]*2+1)**2: (window_sizes[resolution]*2+1)**2 + len(traj)] = True
seqs.append(sequence)
masks.append(sequence_mask)
seqs = torch.tensor(seqs)
masks = torch.stack(masks)
res["traj{}".format(resolution[0])] = seqs
res["mask{}".format(resolution[0])] = masks
return res |