Spaces:
Configuration error
Configuration error
File size: 8,914 Bytes
5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from typing import Optional, Union, Tuple, List, Callable, Dict
from tqdm.notebook import tqdm
import torch
import math
from typing import List, Tuple, Union
from PIL import Image
import cv2
import numpy as np
import os
import re
import torch
from IPython.display import display
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from .ptp_utils import *
import torchvision.transforms as transforms
from sklearn.decomposition import PCA
import pickle as pkl
import torch.nn.functional as F
import argparse
from sklearn.metrics.cluster import adjusted_rand_score, normalized_mutual_info_score, fowlkes_mallows_score, v_measure_score
transform_train = transforms.Compose([
transforms.ToPILImage(),
])
pca = PCA(n_components=3)
def save_mask(mask, output_name):
mask_image = transform_train(mask.float())
mask_image.save(output_name)
def show_image(image):
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
return image
def cluster2noun_mod(clusters, background_segment_threshold, num_segments, nouns, cross_attention):
REPEAT=clusters.shape[0]/cross_attention.shape[0]
result = {}
result_mask={}
nouns_indices = [index for (index, word) in nouns]
nouns_maps = cross_attention.cpu().numpy()[:, :, [i + 1 for i in nouns_indices]]
nouns_maps = cross_attention.unsqueeze(-1).cpu().numpy()
normalized_nouns_maps = np.zeros_like(nouns_maps).repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
for i in range(nouns_maps.shape[-1]):
curr_noun_map = nouns_maps[:, :, i].repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
normalized_nouns_maps[:, :, i] = (curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
for c in range(num_segments):
cluster_mask = np.zeros_like(clusters)
cluster_mask[clusters == c] = 1
score_maps = [cluster_mask * normalized_nouns_maps[:, :, i] for i in range(len(nouns_indices))]
scores = [score_map.sum() / cluster_mask.sum() for score_map in score_maps]
result[c] = nouns[np.argmax(np.array(scores))] if max(scores) > background_segment_threshold else "BG"
result_mask[c]=cluster_mask
return result, result_mask
def cluster2noun_(clusters, background_segment_threshold, num_segments, nouns, cross_attention):
REPEAT=clusters.shape[0]/cross_attention.shape[0]
result = {}
result_mask={}
nouns_indices = [index for (index, word) in nouns]
nouns_maps = cross_attention.cpu().numpy()[:, :, [i + 1 for i in nouns_indices]]
normalized_nouns_maps = np.zeros_like(nouns_maps).repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
for i in range(nouns_maps.shape[-1]):
curr_noun_map = nouns_maps[:, :, i].repeat(REPEAT, axis=0).repeat(REPEAT, axis=1)
normalized_nouns_maps[:, :, i] = (curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
for c in range(num_segments):
cluster_mask = np.zeros_like(clusters)
cluster_mask[clusters == c] = 1
score_maps = [cluster_mask * normalized_nouns_maps[:, :, i] for i in range(len(nouns_indices))]
scores = [score_map.sum() / cluster_mask.sum() for score_map in score_maps]
result[c] = nouns[np.argmax(np.array(scores))] if max(scores) > background_segment_threshold else "BG"
result_mask[c]=cluster_mask
return result, result_mask
def aggregate_attention( attention_maps,
res: int, from_where: List[str],
is_cross: bool, select: int, prompts,):
out = []
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu(), attention_maps
def cluster(self_attention, num_segments,):
np.random.seed(1)
frames = self_attention.shape[0]
video_clusters = []
for i in range(frames):
per_frame_attention = self_attention[i]
print('per_frame_attention',per_frame_attention.shape)
resolution, feat_dim = per_frame_attention.shape[0], per_frame_attention.shape[-1]
attn = per_frame_attention.cpu().numpy().reshape(resolution ** 2, feat_dim)
kmeans = KMeans(n_clusters=num_segments, n_init=10).fit(attn)
clusters = kmeans.labels_
clusters = clusters.reshape(resolution, resolution)
video_clusters.append(clusters)
return video_clusters
def run_clusters(avg_dict, resolution, dict_key, save_path, special_name, num_segments):
video_clusters = cluster(avg_dict[dict_key][resolution], num_segments,)
npy_name=f'cluster_{dict_key}_{resolution}_{special_name}.npy'
np.save(os.path.join(save_path, npy_name), video_clusters)
for i in range(len(video_clusters)):
clusters = video_clusters[i]
output_name=f'cluster_{dict_key}_{resolution}_{i}.png'
plt.imshow(clusters)
plt.axis('off')
plt.savefig(os.path.join(save_path, output_name), bbox_inches='tight', pad_inches=0)
def read_pkl(path,):
with open(path,'rb') as f:
dict_ = pkl.load(f)
return dict_
def draw_pca(avg_dict, resolution, dict_key, save_path, special_name):
RESOLUTION=resolution
if avg_dict[dict_key][RESOLUTION].__len__() == 0:
return
before_pca = avg_dict[dict_key][RESOLUTION]
frames = before_pca.shape[0]
for i in range(frames):
frame = before_pca[i]
print('frame',frame.dtype)
if isinstance(frame, torch.Tensor):
frame = frame.reshape(RESOLUTION * RESOLUTION, -1).cpu().numpy()
else:
frame = frame.reshape(RESOLUTION * RESOLUTION, -1)
pca.fit(frame)
after_pca = pca.transform(frame)
after_pca = after_pca.reshape(RESOLUTION,RESOLUTION,-1)
pca_img_min = after_pca.min(axis=(0, 1))
pca_img_max = after_pca.max(axis=(0, 1))
pca_img = (after_pca - pca_img_min) / (pca_img_max - pca_img_min)
output_name=f'pca_{dict_key}_{resolution}_{i}.png'
pca_img = Image.fromarray((pca_img * 255).astype(np.uint8))
pca_img=pca_img.resize((512,512))
pca_img.save(os.path.join(save_path, output_name))
def image_normalize(numpy_array, save_path,output_name):
numpy_array=numpy_array.cpu().numpy()
img_min = numpy_array.min()
img_max = numpy_array.max()
normalize_array = (numpy_array - img_min) / (img_max - img_min)
plt.imshow(normalize_array)
plt.axis('off')
plt.savefig(os.path.join(save_path, output_name), bbox_inches='tight', pad_inches=0)
def cross_cosine_with_name(resolution, inv_avg_dict, denoise_avg_dict, indice, save_path, save_crossattn=False, noun_name = ''):
inv_cross_attn = inv_avg_dict['attn'][resolution][:,:,indice]
denoise_cross_attn = denoise_avg_dict['attn'][resolution][:,:,indice]
if save_crossattn:
image_normalize(inv_cross_attn, save_path, f'crossattn_{resolution}_inv_{noun_name}.png')
image_normalize(denoise_cross_attn, save_path, f'crossattn_{resolution}_denoise_{noun_name}.png')
return F.cosine_similarity(inv_cross_attn.reshape(1,-1), denoise_cross_attn.reshape(1,-1))
def cross_cosine(resolution, inv_avg_dict, denoise_avg_dict, indice, save_path, save_crossattn=False,):
inv_cross_attn = inv_avg_dict['attn'][resolution][:,:,indice]
denoise_cross_attn = denoise_avg_dict['attn'][resolution][:,:,indice]
if save_crossattn:
image_normalize(inv_cross_attn, save_path, f'crossattn_{resolution}_inv.png')
image_normalize(denoise_cross_attn, save_path, f'crossattn_{resolution}_denoise.png')
return F.cosine_similarity(inv_cross_attn.reshape(1,-1), denoise_cross_attn.reshape(1,-1))
def save_crossattn(input_path, caption, inv_cross_avg_dict, denoise_cross_avg_dict, results_folder, RES=16):
org_image = Image.open(input_path).convert("RGB")
prompts=["<|startoftext|>",] + caption.split(' ') + ["<|endoftext|>",]
inv_crossattn = inv_cross_avg_dict['attn'][RES]
denoise_crossattn = denoise_cross_avg_dict['attn'][RES]
attn_img1, mask_img1, _ = show_cross_attention_plus_orig_img(prompts, inv_crossattn, orig_image=org_image)
attn_img2, mask_img2, _ = show_cross_attention_plus_orig_img(prompts, denoise_crossattn, orig_image=org_image)
attn_img1.save(os.path.join(results_folder,'crossattn_inv.png'))
attn_img2.save(os.path.join(results_folder,'crossattn_denoise.png'))
mask_img1.save(os.path.join(results_folder,'crossattn_inv_mask.png'))
mask_img2.save(os.path.join(results_folder,'crossattn_denoise_mask.png')) |