File size: 17,022 Bytes
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
a043943
 
5602c9a
a043943
5602c9a
a043943
 
 
 
 
 
 
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
a043943
 
5602c9a
a043943
5602c9a
a043943
 
 
 
 
 
 
5602c9a
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""
Collect all function in prompt_attention folder.
Provide a API `make_controller' to return an initialized AttentionControlEdit class object in the main validation loop.
"""

from typing import Optional, Union, Tuple, List, Dict
import abc
import numpy as np
import copy
from einops import rearrange

import torch
import torch.nn.functional as F

import video_diffusion.prompt_attention.ptp_utils as ptp_utils
from video_diffusion.prompt_attention.visualization import show_cross_attention,show_cross_attention_plus_org_img,show_self_attention_comp,aggregate_attention
from video_diffusion.prompt_attention.attention_store import AttentionStore, AttentionControl
from video_diffusion.prompt_attention.attention_register import register_attention_control
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')


from PIL import Image
import os
from video_diffusion.common.image_util import save_gif_mp4_folder_type,make_grid
import cv2
import math

from PIL import Image, ImageDraw
import numpy as np
import math
import os

class EmptyControl:
    
    
    def step_callback(self, x_t):
        return x_t
    
    def between_steps(self):
        return
    
    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        return attn


def apply_jet_colormap(weight):
    # 将权重规范化到0-255
    weight = 255*(weight - weight.min()) / (weight.max() - weight.min()+1e-6)
    weight = weight.astype(np.uint8)

    # 应用Jet颜色映射
    color_mapped_weight = cv2.applyColorMap(weight, cv2.COLORMAP_JET)
    return color_mapped_weight

def show_self_attention_comp(self_attention_map, video, h_index:int, w_index:int, res: int, frames:int, place_in_unet: List[str], step:int ):

    attention_maps = self_attention_map.reshape(frames, res, res, frames, res, res)
    weights =  attention_maps[0,h_index,w_index,:,:,:]
    attention_list = []
    video_frames = []
    #video f,c,h,w

    for i in range(frames):
        weight = weights[i].cpu().numpy()
        weight_colored = apply_jet_colormap(weight)
        weight_colored = weight_colored[:, :, ::-1]  # BGR到RGB的转换
        weight_colored = np.array(Image.fromarray(weight_colored).resize((256, 256)))
        attention_list.append(weight_colored)

        frame = video[i].permute(1,2,0).cpu().numpy()
        mean = np.array((0.48145466, 0.4578275, 0.40821073)).reshape((1, 1, 3))   # [h, w, c]
        varas = np.array((0.26862954, 0.26130258, 0.27577711)).reshape((1, 1, 3)) 
        frame = frame * varas + mean
        frame = (frame - frame.min()) / (frame.max() - frame.min() + 1e-6) * 255
        frame = frame.astype(np.uint8)
        video_frames.append(frame)

    alpha = 0.5
    overlay_frames = [] 

    for frame, attention in zip(video_frames, attention_list):

        attention_resized = cv2.resize(attention, (frame.shape[1], frame.shape[0]))
    
        overlay_frame = cv2.addWeighted(frame, alpha, attention_resized, 1 - alpha, 0)
        
        overlay_frames.append(overlay_frame)
    print('vis self attn')
    save_path = "with_st_layout_vis_self_attn/vis_self_attn"
    os.makedirs(save_path, exist_ok=True)
    video_save_path = f'{save_path}/self-attn-{place_in_unet}-{step}-query-frame0-h{h_index}-w{w_index}.gif'
    save_gif_mp4_folder_type(overlay_frames, video_save_path,save_gif=False)


def draw_grid_on_image(image, grid_size, line_color="gray"):
    draw = ImageDraw.Draw(image)
    w, h = image.size
    for i in range(0, w, grid_size):
        draw.line([(i, 0), (i, h)], fill=line_color)
    for i in range(0, h, grid_size):
        draw.line([(0, i), (w, i)], fill=line_color)
    return image


def identify_self_attention_max_min(sim, video, h_index:int, w_index:int, res: int, frames:int, place_in_unet: str, step:int):
    attention_maps = sim.reshape(frames, res, res, frames, res, res)
    weights = attention_maps[0, h_index, w_index, :, :, :]

    flattened_weights = weights.reshape(-1)
    global_max_index = flattened_weights.argmax().cpu().numpy()
    global_min_index = flattened_weights.argmin().cpu().numpy()
    print('weights.shape',weights.shape)

    frame_max, h_max, w_max = np.unravel_index(global_max_index, weights.shape)
    frame_min, h_min, w_min = np.unravel_index(global_min_index, weights.shape)

    video_frames = []

    query_frame_index = 0
    query_h = h_index
    query_w = w_index

    for i in range(frames):
        frame = video[i].permute(1, 2, 0).cpu().numpy()
        mean = np.array((0.48145466, 0.4578275, 0.40821073)).reshape((1, 1, 3))
        varas = np.array((0.26862954, 0.26130258, 0.27577711)).reshape((1, 1, 3))
        frame = (frame * varas + mean) * 255
        frame = np.clip(frame, 0, 255).astype(np.uint8)
        frame_img = Image.fromarray(frame)

        grid_size = 512 // res
        frame_img = draw_grid_on_image(frame_img, grid_size)

        draw = ImageDraw.Draw(frame_img)
        if i == frame_max:
            max_pixel_pos = (w_max * grid_size, h_max * grid_size)
            draw.rectangle([max_pixel_pos, (max_pixel_pos[0] + grid_size, max_pixel_pos[1] + grid_size)], outline="red", width=2)
        if i == frame_min:
            min_pixel_pos = (w_min * grid_size, h_min * grid_size)
            draw.rectangle([min_pixel_pos, (min_pixel_pos[0] + grid_size, min_pixel_pos[1] + grid_size)], outline="blue", width=2)

        if i == query_frame_index:
            query_pixel_pos = (query_w * grid_size, query_h * grid_size)
            draw.rectangle([query_pixel_pos, (query_pixel_pos[0] + grid_size, query_pixel_pos[1] + grid_size)], outline="yellow", width=2)

        video_frames.append(frame_img) 

    save_path = "/visualization/correspondence_with_query"
    os.makedirs(save_path, exist_ok=True)
    video_save_path = os.path.join(save_path, f'self-attn-{place_in_unet}-{step}-query-frame0-h{h_index}-w{w_index}.gif')

    save_gif_mp4_folder_type(video_frames, video_save_path, save_gif=False)  




class ST_Layout_Attn_Control(AttentionControl, abc.ABC):

    def __init__(self, end_step=15, total_steps=50, step_idx=None, text_cond=None, sreg_maps=None, creg_maps=None, reg_sizes=None,reg_sizes_c=None, time_steps=None,clip_length=None,attention_type=None):
        """
        Spatial-Temporal Layout-guided Attention (ST-Layout Attn) for Stable-Diffusion model
        note: without vis cross attention weight function.
        Args:
            end_step: the step to end st-layout attn control
            total_steps: the total number of steps
            step_idx: list the steps to apply mutual self-attention control
            text_cond: discrete text embedding for each region.
            sreg_maps: spatial-temporal self-attention qk condition maps.
            creg_maps: cross-attention qk condition maps
            reg_sizes/reg_sizes_c: size regularzation maps for each instance in self_attn/cross_attention
            clip_length: frames len of video
            attention_type: FullyFrameAttention_sliced_attn/FullyFrameAttention/SparseCausalAttention
        """
        super().__init__()
        self.total_steps = total_steps
        self.step_idx = list(range(0, end_step))
        self.total_infer_steps = 50
        self.text_cond = text_cond
        self.sreg_maps = sreg_maps
        self.creg_maps = creg_maps
        self.reg_sizes = reg_sizes
        self.reg_sizes_c = reg_sizes_c
        self.clip_length = clip_length
        self.attention_type = attention_type
        self.sreg = .3
        self.creg = 1.
        self.count = 0
        self.reg_part = .3
        self.time_steps = time_steps
        print("Modulated Ctrl at denoising steps: ", self.step_idx)

    def forward(self, sim, is_cross, place_in_unet, **kwargs):
        """
        Attention forward function
        """
        #print("self.cur_step",self.cur_step)

        if self.cur_step not in self.step_idx:
            return super().forward(sim, is_cross, place_in_unet, **kwargs)


        ### sim for  "SparseCausalAttention": (frames, heads=8,res, 2*res)
        ### sim for  "FullyFrameAttention" : 1, heads, frame*res,frane*res  [1, 8, 12288, 12288])
        num_heads = sim.shape[1]
        if num_heads == 1:
           self.attention_type == "FullyFrameAttention_sliced_attn"

        treg = torch.pow((self.time_steps[self.cur_step]-1)/1000, 5)        

        
        if not is_cross:
            min_value = sim.min(-1)[0].unsqueeze(-1)
            max_value = sim.max(-1)[0].unsqueeze(-1) 
            if self.attention_type == "SparseCausalAttention":
                mask = self.sreg_maps[sim.size(2)].repeat(1,num_heads,1,1)
                size_reg = self.reg_sizes[sim.size(2)].repeat(1,num_heads,1,1)
            elif self.attention_type ==  "FullyFrameAttention":
                mask = self.sreg_maps[sim.size(2)//self.clip_length].repeat(1,num_heads,1,1)
                size_reg = self.reg_sizes[sim.size(2)//self.clip_length].repeat(1,num_heads,1,1)
            elif self.attention_type ==  "FullyFrameAttention_sliced_attn":
                mask = self.sreg_maps[sim.size(2)//self.clip_length]
                size_reg = self.reg_sizes[sim.size(2)//self.clip_length]

            else:
                print("unknown attention type")
                exit()
            # if place_in_unet == "up" and res == 32:
            #     # h_index 11 w_index =15
            #     show_self_attention_comp(sim,video=self.video,h_index=11,w_index=15,res=32,frames=self.clip_length,place_in_unet="up",step=self.cur_step)
            #if place_in_unet == "up" and res == 8:
            #    identify_self_attention_max_min(sim,video=self.video,h_index=3,w_index=4,res=8,frames=self.clip_length,place_in_unet="up",step=self.cur_step)
            
            sim += (mask>0)*size_reg*self.sreg*treg*(max_value-sim)
            sim -= ~(mask>0)*size_reg*self.sreg*treg*(sim-min_value) 

        else:
            
            min_value = sim.min(-1)[0].unsqueeze(-1)
            max_value = sim.max(-1)[0].unsqueeze(-1)  
            mask = self.creg_maps[sim.size(2)].repeat(1,num_heads,1,1)
            size_reg = self.reg_sizes_c[sim.size(2)].repeat(1,num_heads,1,1)

            sim += (mask>0)*size_reg*self.creg*treg*(max_value-sim)
            sim -= ~(mask>0)*size_reg*self.creg*treg*(sim-min_value)
            
        self.count +=1 
        return  sim




class Attention_Record_Processor(AttentionStore, abc.ABC):
    """ record ddim inversion self attention and cross attention """

    def __init__(self, additional_attention_store: AttentionStore =None,save_self_attention: bool=True,disk_store=False):
        super(Attention_Record_Processor, self).__init__(
            save_self_attention=save_self_attention,
            disk_store=disk_store)
        self.additional_attention_store = additional_attention_store
        self.attention_position_counter_dict = {
            'down_cross': 0,
            'mid_cross': 0,
            'up_cross': 0,
            'down_self': 0,
            'mid_self': 0,
            'up_self': 0,
        }

        #print("Modulated Ctrl at denoising steps: ", self.step_idx)
    
    def update_attention_position_dict(self, current_attention_key):
        self.attention_position_counter_dict[current_attention_key] +=1


    def forward(self, sim, is_cross: bool, place_in_unet: str,**kwargs):
        super(Attention_Record_Processor, self).forward(sim, is_cross, place_in_unet,**kwargs)
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        
        self.update_attention_position_dict(key)
    
        return sim

    
    def between_steps(self):

        super().between_steps()
        self.step_store = self.get_empty_store()
        
        self.attention_position_counter_dict = {
            'down_cross': 0,
            'mid_cross': 0,
            'up_cross': 0,
            'down_self': 0,
            'mid_self': 0,
            'up_self': 0,
        }        
        return 



class ST_Layout_Attn_ControlEdit(AttentionStore, abc.ABC):
    def __init__(self, end_step=15, total_steps=50, step_idx=None, text_cond=None, sreg_maps=None, creg_maps=None, reg_sizes=None,reg_sizes_c=None, 
                 time_steps=None,
                 clip_length=None,attention_type=None,
                 additional_attention_store: AttentionStore =None,                 
                 save_self_attention: bool=True,
                 disk_store=False,
                 video = None,
                 ):
        """
        Spatial-Temporal Layout-guided Attention (ST-Layout Attn) for Stable-Diffusion model
        note: with vis cross attention weight function.
        Args:
            end_step: the step to end st-layout attn control
            total_steps: the total number of steps
            step_idx: list the steps to apply mutual self-attention control
            text_cond: discrete text embedding for each region.
            sreg_maps: spatial-temporal self-attention qk condition maps.
            creg_maps: cross-attention qk condition maps
            reg_sizes/reg_sizes_c: size regularzation maps for each instance in self_attn/cross_attention
            clip_length: frames len of video
            attention_type: FullyFrameAttention_sliced_attn/FullyFrameAttention/SparseCausalAttention
        """
        super(ST_Layout_Attn_ControlEdit, self).__init__(
            save_self_attention=save_self_attention,
            disk_store=disk_store)
        self.total_steps = total_steps
        self.step_idx = list(range(0, end_step))
        self.total_infer_steps = 50
        self.text_cond = text_cond
        self.sreg_maps = sreg_maps
        self.creg_maps = creg_maps
        self.reg_sizes = reg_sizes
        self.reg_sizes_c = reg_sizes_c
        self.clip_length = clip_length
        self.attention_type = attention_type
        self.sreg = .3
        self.creg = 1.
        self.count = 0
        self.reg_part = .3
        self.time_steps = time_steps
        self.additional_attention_store = additional_attention_store
        self.attention_position_counter_dict = {
            'down_cross': 0,
            'mid_cross': 0,
            'up_cross': 0,
            'down_self': 0,
            'mid_self': 0,
            'up_self': 0,
        }
        self.video = video
    
    def update_attention_position_dict(self, current_attention_key):
        self.attention_position_counter_dict[current_attention_key] +=1


    def forward(self, sim, is_cross: bool, place_in_unet: str,**kwargs):
        super(ST_Layout_Attn_ControlEdit, self).forward(sim, is_cross, place_in_unet,**kwargs)

        # print("self.cur_step",self.cur_step)
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        
        self.update_attention_position_dict(key)

        if self.cur_step not in self.step_idx:
            return sim
        

        num_heads = sim.shape[1]
        if num_heads == 1:
           self.attention_type == "FullyFrameAttention_sliced_attn"

        treg = torch.pow((self.time_steps[self.cur_step]-1)/1000, 5)        


        if not is_cross:
            ## Modulate self-attention
            min_value = sim.min(-1)[0].unsqueeze(-1)
            max_value = sim.max(-1)[0].unsqueeze(-1) 

            if self.attention_type == "SparseCausalAttention":
                mask = self.sreg_maps[sim.size(2)].repeat(1,num_heads,1,1)
                size_reg = self.reg_sizes[sim.size(2)].repeat(1,num_heads,1,1)
            elif self.attention_type ==  "FullyFrameAttention":
                mask = self.sreg_maps[sim.size(2)//self.clip_length].repeat(1,num_heads,1,1)
                size_reg = self.reg_sizes[sim.size(2)//self.clip_length].repeat(1,num_heads,1,1)
            elif self.attention_type ==  "FullyFrameAttention_sliced_attn":
                mask = self.sreg_maps[sim.size(2)//self.clip_length]
                size_reg = self.reg_sizes[sim.size(2)//self.clip_length]

            else:
                print("unknown attention type")
                exit()

            sim += (mask>0)*size_reg*self.sreg*treg*(max_value-sim)
            sim -= ~(mask>0)*size_reg*self.sreg*treg*(sim-min_value)  
            
        else:
            #Modulate cross-attention

            min_value = sim.min(-1)[0].unsqueeze(-1)
            max_value = sim.max(-1)[0].unsqueeze(-1) 
            mask = self.creg_maps[sim.size(2)].repeat(1,num_heads,1,1)
            size_reg = self.reg_sizes_c[sim.size(2)].repeat(1,num_heads,1,1)
            sim += (mask>0)*size_reg*self.creg*treg*(max_value-sim)
            sim -= ~(mask>0)*size_reg*self.creg*treg*(sim-min_value)
        self.count +=1 
        return  sim

    
    def between_steps(self):

        super().between_steps()
        self.step_store = self.get_empty_store()
        
        self.attention_position_counter_dict = {
            'down_cross': 0,
            'mid_cross': 0,
            'up_cross': 0,
            'down_self': 0,
            'mid_self': 0,
            'up_self': 0,
        }        
        return