File size: 41,620 Bytes
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5602c9a
a043943
 
5602c9a
 
a043943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
 
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
a043943
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a043943
 
 
 
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# code mostly taken from https://github.com/huggingface/diffusers
import inspect
from typing import Callable, List, Optional, Union
import PIL
import torch
import numpy as np
from einops import rearrange
from tqdm import tqdm

from diffusers.utils import deprecate, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput


from .stable_diffusion import SpatioTemporalStableDiffusionPipeline
from diffusers.models import AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer

import torch.nn.functional as F
from omegaconf import OmegaConf
from video_diffusion.prompt_attention.attention_register import register_attention_control
from video_diffusion.prompt_attention.attention_util import ST_Layout_Attn_Control,ST_Layout_Attn_ControlEdit,Attention_Record_Processor
from video_diffusion.prompt_attention import attention_util
from video_diffusion.prompt_attention.sd_study_utils import *
from video_diffusion.prompt_attention.attention_store import AttentionStore
from video_diffusion.common.image_util import save_gif_mp4_folder_type

from PIL import Image
from einops import rearrange
from ..models.controlnet3d import ControlNetModel
from ..models.unet_3d_condition import UNetPseudo3DConditionModel

from diffusers.schedulers import (
    DDIMScheduler,
    DDIMInverseScheduler,
)
import os
import nltk
nltk.download('punkt')

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class DDIMSpatioTemporalStableDiffusionPipeline(SpatioTemporalStableDiffusionPipeline):
    r"""
    Pipeline for text-to-video generation using Spatio-Temporal Stable Diffusion.
    """
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNetPseudo3DConditionModel,
        controlnet: ControlNetModel,
        scheduler: DDIMScheduler,
        inverse_scheduler: DDIMInverseScheduler,
        disk_store: bool=False,
        logdir=None,
        ):
        super().__init__(vae, text_encoder, tokenizer, unet, controlnet, scheduler,inverse_scheduler)
        self.store_controller = attention_util.AttentionStore(disk_store=disk_store)
        self.logdir=logdir

    r"""
    Pipeline for text-to-video generation using Spatio-Temporal Stable Diffusion.
    """


    def check_inputs(self, prompt, height, width, callback_steps, strength=None):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        if strength is not None:
            if strength <= 0 or strength > 1:
                raise ValueError(f"The value of strength should in (0.0, 1.0] but is {strength}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )


    @torch.no_grad()
    def prepare_source_latents(self, image, batch_size, num_images_per_prompt, 
                                    #   dtype, device, 
                                      text_embeddings,
                                      generator=None): 
        
        # Not sure if image need to change device and type
        # image = image.to(device=device, dtype=dtype)
        print("generator is list:",isinstance(generator, list))
        batch_size = batch_size * num_images_per_prompt
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if isinstance(generator, list):
            init_latents = [
                self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
            ]
            init_latents = torch.cat(init_latents, dim=0)
        else:
            ## org is
            #init_latents = self.vae.encode(image).latent_dist.sample(generator)
            init_latents = self.vae.encode(image).latent_dist.mean
        init_latents = 0.18215 * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        # get latents
        init_latents_bcfhw = rearrange(init_latents, "(b f) c h w -> b c f h w", b=batch_size)
        return init_latents_bcfhw


    def prepare_latents_ddim_inverted(self, image, batch_size, 
                                      source_prompt,
                                      do_classifier_free_guidance,
                                      control = None,
                                      controlnet_conditioning_scale=None,
                                      use_pnp=None,
                                      cluster_inversion_feature = None,
                                      **kwargs,
                                      ): 
        weight_dtype = image.dtype
        device = self._execution_device
        print('device',device)
        timesteps = self.scheduler.timesteps
        saved_features0 = []
        saved_features1 = []
        saved_features2 = []
        saved_q4 = []
        saved_k4 = []
        saved_q5 = []
        saved_k5 = []
        saved_q6 = []
        saved_k6 = []
        saved_q7 = []
        saved_k7 = []
        saved_q8 = []
        saved_k8 = []
        saved_q9 = []
        saved_k9 = []
        #ddim inverse
        num_inverse_steps = 50
        self.inverse_scheduler.set_timesteps(num_inverse_steps, device=device)
        inverse_timesteps, num_inverse_steps = self.get_inverse_timesteps(num_inverse_steps, 1, device)
        num_warmup_steps = len(inverse_timesteps) - num_inverse_steps * self.inverse_scheduler.order

        #============ddim inversion==========*
        prompt_embeds = self._encode_prompt(
            source_prompt,
            device=device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=None,
        )

        latents = self.prepare_video_latents(image, batch_size, self.unet.dtype, device)

        bz, c, clip_length, downsample_height, downsample_width = latents.shape
        del self.store_controller
        self.store_controller = attention_util.AttentionStore()
        attention_maps_list = []
        self_attention_maps_list = []
        cond_embeddings_list = []
        
        editor = Attention_Record_Processor(additional_attention_store=self.store_controller)
        attention_util.register_attention_control(self, editor, prompt_embeds, clip_length,downsample_height,downsample_width,ddim_inversion=True)


        with self.progress_bar(total=num_inverse_steps-1) as progress_bar:
            for i, t in enumerate(inverse_timesteps[1:]):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)


                down_block_res_samples, mid_block_res_sample = self.controlnet(latent_model_input, t, encoder_hidden_states=prompt_embeds,controlnet_cond=control,return_dict=False)
                down_block_res_samples = [
                    down_block_res_sample * controlnet_conditioning_scale
                    for down_block_res_sample in down_block_res_samples
                ]
                mid_block_res_sample *= controlnet_conditioning_scale
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    **kwargs,
                ).sample 
                if use_pnp and t.cpu() in timesteps:
                    saved_features0.append(self.unet.up_blocks[1].resnets[0].out_layers_features.cpu())
                    saved_features1.append(self.unet.up_blocks[1].resnets[1].out_layers_features.cpu())
                    saved_features2.append(self.unet.up_blocks[2].resnets[0].out_layers_features.cpu())
                    saved_q4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.q.cpu())
                    saved_k4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.k.cpu())
                    saved_q5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.q.cpu())
                    saved_k5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.k.cpu())
                    saved_q6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.q.cpu())
                    saved_k6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.k.cpu())
                    saved_q7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.q.cpu())
                    saved_k7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.k.cpu())
                    saved_q8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.q.cpu())
                    saved_k8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.k.cpu())
                    saved_q9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.q.cpu())
                    saved_k9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.k.cpu())


                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample.to(dtype=weight_dtype)
                if i == len(inverse_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0):
                    progress_bar.update()
        if use_pnp:
            saved_features0.reverse()
            saved_features1.reverse()
            saved_features2.reverse()
            saved_q4.reverse()
            saved_k4.reverse()
            saved_q5.reverse()
            saved_k5.reverse()
            saved_q6.reverse()
            saved_k6.reverse()
            saved_q7.reverse()
            saved_k7.reverse()
            saved_q8.reverse()
            saved_k8.reverse()
            saved_q9.reverse()
            saved_k9.reverse()

            attn_inversion_dict = {
                'features0': saved_features0, 'features1': saved_features1, 'features2': saved_features2,
                'q4': saved_q4,'k4': saved_k4,'q5': saved_q5,'k5': saved_k5,'q6': saved_q6,'k6': saved_k6,
                'q7': saved_q7,'k7': saved_k7,'q8': saved_q8,'k8': saved_k8,'q9': saved_q9,'k9': saved_k9
            }
        else:
            attn_inversion_dict = None

        if cluster_inversion_feature:
            logger.info('cluster ddim inversion feature')
            inv_self_avg_dict={}
            inv_cross_avg_dict={}
            element_name = 'attn'
            attn_size = 32
            for element_name in ['attn']:
                inv_self_avg_dict[element_name]={}
                inv_cross_avg_dict[element_name]={}

            self_attn_avg = editor.aggregate_attention(from_where=("up", "down", "mid"), 
                                                                    res=attn_size,is_cross=False)

            cross_attn_avg = editor.aggregate_attention(from_where=("up", "down", "mid"), 
                                                                    res=attn_size,is_cross=True)   

            print('self_attn_avg',self_attn_avg.shape)
            print('cross_attn_avg', cross_attn_avg.shape)
            inv_self_avg_dict[element_name][attn_size]=self_attn_avg
            inv_cross_avg_dict[element_name][attn_size]=cross_attn_avg

            os.makedirs(os.path.join(self.logdir, "attn_inv"), exist_ok=True)
            os.makedirs(os.path.join(self.logdir, "sd_study"), exist_ok=True)
            with open(os.path.join(self.logdir, 
                    "attn_inv/inv_self_avg_dict.pkl"), 
                    'wb') as f:
                pkl.dump(inv_self_avg_dict, f)

            with open(os.path.join(self.logdir, 
                    "attn_inv/inv_cross_avg_dict.pkl"), 
                    'wb') as f:
                pkl.dump(inv_cross_avg_dict, f)

            num_segments=3
            draw_pca(inv_self_avg_dict, resolution=32, dict_key='attn', 
                    save_path=os.path.join(self.logdir, 'sd_study'),
                    special_name='inv_self')
        
            run_clusters(inv_self_avg_dict, resolution=32, dict_key='attn', 
                    save_path=os.path.join(self.logdir, 'sd_study'),
                    special_name='inv_self',num_segments=num_segments)

            cross_attn_visualization = attention_util.show_cross_attention_plus_org_img(self.tokenizer, source_prompt, 
                                        image, editor, 32, ["up", "down", "mid"], save_path= os.path.join(self.logdir,'sd_study'),attention_maps=cross_attn_avg)


            dict_key='attn'
            special_name='inv_self'
            resolution = 32
            threshold=0.1
            
            tokenized_prompt = nltk.word_tokenize(source_prompt)
            nouns = [(i, word) for (i, (word, pos)) in enumerate(nltk.pos_tag(tokenized_prompt)) if pos[:2] == 'NN']
            print(nouns)

            npy_name=f'cluster_{dict_key}_{resolution}_{special_name}.npy'
            save_path=os.path.join(self.logdir, 'sd_study')

            abs_filename=os.path.join(self.logdir, "attn_inv", f"inv_cross_avg_dict.pkl")
            inv_cross_avg_dict=read_pkl(abs_filename)

            video_cross_attention = inv_cross_avg_dict['attn'][32]
            video_clusters=np.load(os.path.join(save_path, npy_name))

            t = video_clusters.shape[0]
            for i in range(t):
                clusters = video_clusters[i]
                cross_attention = video_cross_attention[i]
                c2noun, c2mask = cluster2noun_(clusters, threshold, num_segments, nouns,cross_attention)
                print('c2noun',c2noun)
                merged_mask={}
                for index in range(len(c2noun)):    
                    # mask_ = merged_mask[class_name]
                    item=c2noun[index]
                    mask_ = c2mask[index]
                    mask_ = torch.from_numpy(mask_)
                    mask_ = F.interpolate(mask_.float().unsqueeze(0).unsqueeze(0), size=512, mode='nearest').round().bool().squeeze(0).squeeze(0)
                    
                    output_name = os.path.join(f"{save_path}",
                                                f"frame_{i}_{item}_{index}.png")

                    save_mask(mask_,  output_name)
        
        return latents, attn_inversion_dict

    
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start
    
    def get_inverse_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)

        # safety for t_start overflow to prevent empty timsteps slice
        if t_start == 0:
            return self.inverse_scheduler.timesteps, num_inference_steps
        timesteps = self.inverse_scheduler.timesteps[:-t_start]

        return timesteps, num_inference_steps - t_start

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        frames,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        print("self.vae_scale_factor",self.vae_scale_factor)
        shape = (
            batch_size,
            num_channels_latents,
            frames,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            rand_device = "cpu" if device.type == "mps" else device

            if isinstance(generator, list):
                shape = (1,) + shape[1:]
                latents = [
                    torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
                    for i in range(batch_size)
                ]
                latents = torch.cat(latents, dim=0).to(device)
            else:
                latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(
                    device
                )
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_video_latents(self, frames, batch_size, dtype, device, generator=None):
        if not isinstance(frames, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(frames)}"
            )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if isinstance(generator, list):
            latents = [
                self.vae.encode(frames[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
            ]
            latents = torch.cat(latents, dim=0)
        else:
            latents = self.vae.encode(frames).latent_dist.sample(generator)

        latents = self.vae.config.scaling_factor * latents

        latents = rearrange(latents, "(b f) c h w ->b c f h w", b=batch_size)

        return latents

    def clean_features(self):
        self.unet.up_blocks[1].resnets[0].out_layers_inject_features = None
        self.unet.up_blocks[1].resnets[1].out_layers_inject_features = None
        self.unet.up_blocks[2].resnets[0].out_layers_inject_features = None
        self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = None
        self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = None
        self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = None
        self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = None
        self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = None
        self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = None
        self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = None

    def _get_attention_type(self):
        sub_nets = self.unet.named_children()
        for net in sub_nets:
            if hasattr(net[1], 'children'):
                for net in net[1].named_children():
                    if hasattr(net[1], 'children'):
                        for net in net[1].named_children():
                            if net[1].__class__.__name__ == "SpatioTemporalTransformerModel":
                                for net in net[1].named_children():
                                    if hasattr(net[1], 'children'):
                                       for net in net[1].named_children():
                                            if net[1].__class__.__name__ == "SpatioTemporalTransformerBlock":
                                                for net in net[1].named_children():
                                                    if net[1].__class__.__name__ == "SparseCausalAttention":
                                                        attention_type = "SparseCausalAttention"
                                                    elif net[1].__class__.__name__ == "FullyFrameAttention":
                                                        attention_type = "FullyFrameAttention"
        #print("attention_type:",attention_type)
        return attention_type

    def _prepare_attention_layout(self,bsz,height,width,layouts,prompts,clip_length,attention_type,device):
        ## current layouts  f s c h w
        ## org layouts s c h w

        #print("prompt:",prompts)
        # sp_sz =self.unet.sample_size
        sp_sz = height*width
        frames, seg_cls, c, h ,w = layouts.shape
        text_input = self.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False, 
                                    max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
        cond_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]

        uncond_input = self.tokenizer([""]*bsz, padding="max_length", max_length=self.tokenizer.model_max_length,
                                    truncation=True, return_tensors="pt")
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]

        for i in range(1,len(prompts)):
            wlen = text_input['length'][i] - 2
            widx = text_input['input_ids'][i][1:1+wlen]
            for j in range(77):
                if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
                    break

        ###########################
        ###### prep for sreg ###### 
        ###########################
      
        sreg_maps = {}
        reg_sizes = {}
        reg_sizes_c = {}

        device = layouts.device

        frame_index_pre = torch.arange(frames)+(-1)
        frame_index_pre = frame_index_pre.clip(0, frames-1)

        for r in range(4):
            layouts_s_frames = []
            if attention_type == "SparseCausalAttention":
                layouts_s_sparse_attn = []

            h = int(height/np.power(2,r))
            w= int(width/np.power(2,r))
            #layouts torch.Size([70, 2, 1, 64, 64])
            # layouts_interpolate = F.interpolate(layouts.squeeze(2), (res, res), mode='nearest').unsqueeze(2)    
            layouts_interpolate = F.interpolate(layouts.squeeze(2), (h, w), mode='nearest').unsqueeze(2)  
            layouts_interpolate = layouts_interpolate.view(frames,seg_cls,1,-1)   ## frames,seg_cls,1,res^2

            ### implementation of sparse casual attn and fully frame attn
            for i in range(frames):
                #layouts_f = layouts[i]

                layouts_s = layouts_interpolate[i]

                if attention_type == "SparseCausalAttention":
                
                    ### prepare for SparseCausalAttention query, key/value
                    query= layouts_s
                    query = query.view(query.size(0),-1,1).to(device)  ### segcls,res^2,1  #[cls, 4096, 1]
        
                    ### key should be segcls,1,2xres^2
                    key = torch.cat((layouts_interpolate[0],layouts_interpolate[frame_index_pre[i]]),dim=-1).to(device)
                    #([cls, 1, 8192])

                    layouts_s_cross_frame_attn= (query * key).sum(0).unsqueeze(0).repeat(bsz,1,1)  ## 1,4096,8192

                    layouts_s_sparse_attn.append(layouts_s_cross_frame_attn)
                
                layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)

                layouts_s_frames.append(layouts_s)


            layouts_s_frames = torch.stack(layouts_s_frames,dim=0)
            if attention_type == "SparseCausalAttention":
                layouts_s_sparse_attn = torch.stack(layouts_s_sparse_attn,dim=0)
                sreg_maps[h*w] = layouts_s_sparse_attn
                reg_sizes[h*w] = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(clip_length, 2))
                reg_sizes_c[h*w]  = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(clip_length, 2))
            #### code for check error#####
            # num_nonzero = torch.count_nonzero(layouts_s_frames)
            # print("num_nonzero",num_nonzero)
            # print("layouts_s_frames",layouts_s_frames.shape)
            # print("layouts_s_frames",layouts_s_frames)
            # print("reg_size final shape:", (1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))).shape)
            # print("reg_size", (1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))))
            #### code for check error#####


            #print("layouts_s",layouts_s.shape)

            #print("layouts_s.view(layouts_s.size(0),-1,1)",*layouts_s.view(layouts_s.size(0),-1,1).shape)

            if attention_type == "FullyFrameAttention":
                layouts_s= rearrange(layouts_interpolate,"f s c res -> s c (f res)")
                if r==0:
                    layout_s = None
                    reg_sizes[h*w] = None
                    sreg_maps[h*w] = None
                    reg_sizes_c[h*w] = None
                else:
                    layouts_s = (layouts_s*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1).to(torch.float16)
                    sreg_maps[h*w] = layouts_s
                    reg_sizes[h*w] = 1-1.*layouts_s.sum(-1, keepdim=True)/((h*clip_length)*(w*clip_length))
                    reg_sizes_c[h*w]  =  1-1.*layouts_s_frames.sum(-1, keepdim=True)/(h*w)
                #print("layouts_s",layouts_s.shape)
                # if res == 64:
                #     reg_sizes[np.power(res, 2)] = None
                # else:
                #     reg_sizes[np.power(res, 2)] = 1-1.*layouts_s.sum(-1, keepdim=True)/(np.power(res*clip_length, 2))
                # #sreg_maps[np.power(res, 2)] = layouts_s_frames
                # sreg_maps[np.power(res, 2)] = layouts_s
                # reg_sizes_c[np.power(res, 2)]  =  1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))
            
            
        ###########################
        ###### prep for creg ######
        ###########################
        pww_maps = torch.zeros(frames, 1, 77, height, width).to(device)
        for i in range(1,len(prompts)):
            wlen = text_input['length'][i] - 2
            widx = text_input['input_ids'][i][1:1+wlen]
            for j in range(77):
                if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
                    for f in range(frames):
                        pww_maps[f,:,j:j+wlen,:,:] = layouts[f,i-1:i]    # frames, seg_cls, c, h ,w = layouts.shape
                    cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
                    print(prompts[i], i, '-th segment is handled.')
                    break
        
        # print("cond_embeddings",cond_embeddings)
        creg_maps = {}
        for r in range(4):
            pww_maps_frames = []
            h = int(height/np.power(2,r))
            w = int(width/np.power(2,r))
            for i in range(frames):
                pww_map_frame = pww_maps[i]
                pww_map_frame.view(1,77,height,width)
                pww_map_frame = F.interpolate(pww_map_frame, (h, w), mode='nearest')
                pww_map_frame = pww_map_frame.view(1, 77, -1).permute(0, 2, 1).repeat(bsz,1,1)  # 重新调整形状
                pww_maps_frames.append(pww_map_frame)
            # 使用 torch.cat 连接处理后的所有帧
            layout_c = torch.stack(pww_maps_frames, dim=0)
            # print("layout_c",layout_c)
            creg_maps[h*w] = layout_c

        ###########################    
        #### prep for text_emb ####
        ###########################
        text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])

        return text_cond, sreg_maps, creg_maps, reg_sizes, reg_sizes_c



    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        image: Union[torch.FloatTensor, PIL.Image.Image] = None,
        latent_mask: Union[torch.FloatTensor, PIL.Image.Image] = None,
        layouts: Union[torch.FloatTensor, PIL.Image.Image] = None,
        blending_percentage: float=0.25,
        modulated_percentage: float=0.3,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = None,
        num_inference_steps: int = 50,
        clip_length: int = 8,
        guidance_scale: float = 7.5,
        source_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        control: Optional[torch.FloatTensor] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        logdir: str=None,
        controlnet_conditioning_scale: float = 1.0,
        use_pnp:  bool = False,
        cluster_inversion_feature: bool = False,
        vis_cross_attn: bool = False,
        attn_inversion_dict: dict=None,
        **kwargs,
    ):

        # 0. Default height and width to unet
        t , c , height, width = image.shape
        prompt = OmegaConf.to_container(prompt, resolve=True)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps, strength)

        # 2. Define call parameters
        batch_size = 1
        weight_dtype = image.dtype
        device = self._execution_device

        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
    
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        self.scheduler.set_timesteps(num_inference_steps, device=device)

        if latents is None:
            latents, attn_inversion_dict = self.prepare_latents_ddim_inverted(
                image, batch_size, source_prompt,
                do_classifier_free_guidance, generator, 
                control, controlnet_conditioning_scale, use_pnp, cluster_inversion_feature
            )
            print("use inversion latents")

        ## prepare text embedding, self attention map, cross attention map
        _, _, _, downsample_height, downsample_width = latents.shape

        attention_type = self._get_attention_type()
        text_cond, sreg_maps, creg_maps, reg_sizes,reg_sizes_c = self._prepare_attention_layout(batch_size,downsample_height,downsample_width,
                                                                                                layouts,prompt,clip_length,attention_type,device)
        
        time_steps = self.scheduler.timesteps

        #============do visualization for st-layout attn===============#
        self.store_controller = attention_util.AttentionStore()
        editor = ST_Layout_Attn_ControlEdit(text_cond=text_cond,sreg_maps=sreg_maps,creg_maps=creg_maps,reg_sizes=reg_sizes,reg_sizes_c=reg_sizes_c,
                                                time_steps=time_steps,clip_length=clip_length,attention_type=attention_type,
                                                additional_attention_store=self.store_controller,
                                                save_self_attention = True,
                                                disk_store = False,
                                                video = image,
                                                )  
        attention_util.register_attention_control(self, editor, text_cond, clip_length, downsample_height,downsample_width,ddim_inversion=False)
        #============do visualization for st-layout attn===============#

        # editor = ST_Layout_Attn_Control(text_cond=text_cond,sreg_maps=sreg_maps,creg_maps=creg_maps,reg_sizes=reg_sizes,reg_sizes_c=reg_sizes_c,
        #                                    time_steps=time_steps,clip_length=clip_length,attention_type=attention_type)  

        # register_attention_control(self, editor, text_cond, clip_length,downsample_height,downsample_width,ddim_inversion=False)

        # 3. Encode input prompt  
        prompt = prompt[:1]
        text_embeddings = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )
        source_latents = self.prepare_source_latents(
            image, batch_size, num_images_per_prompt, 
            # text_embeddings.dtype, device, 
            text_embeddings,
            generator,
        )

        # 7. Denoising loop
        num_warmup_steps = len(time_steps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps* (1-blending_percentage)) as progress_bar:
            for i, t in enumerate(time_steps[int(len(time_steps) * blending_percentage):]):
                    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # inject features
                    if use_pnp and i < kwargs["inject_step"]:
                        self.unet.up_blocks[1].resnets[0].out_layers_inject_features = attn_inversion_dict['features0'][i].to(device)
                        self.unet.up_blocks[1].resnets[1].out_layers_inject_features = attn_inversion_dict['features1'][i].to(device)
                        self.unet.up_blocks[2].resnets[0].out_layers_inject_features = attn_inversion_dict['features2'][i].to(device)
                        self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q4'][i].to(device)
                        self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k4'][i].to(device)
                        self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q =  attn_inversion_dict['q5'][i].to(device)
                        self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k5'][i].to(device)
                        self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q =  attn_inversion_dict['q6'][i].to(device)
                        self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k6'][i].to(device)
                        self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q7'][i].to(device)
                        self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k7'][i].to(device)
                        self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q =  attn_inversion_dict['q8'][i].to(device)
                        self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k8'][i].to(device)
                        self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q =  attn_inversion_dict['q9'][i].to(device)
                        self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k =  attn_inversion_dict['k9'][i].to(device)
                    else:
                        self.clean_features()

                    down_block_res_samples, mid_block_res_sample = self.controlnet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings,
                        controlnet_cond=control,
                        return_dict=False,
                    )
                    down_block_res_samples = [
                        down_block_res_sample * controlnet_conditioning_scale
                        for down_block_res_sample in down_block_res_samples
                    ]
                    mid_block_res_sample *= controlnet_conditioning_scale
                    
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=text_embeddings,
                        down_block_additional_residuals=down_block_res_samples,
                        mid_block_additional_residual=mid_block_res_sample,
                        **kwargs,
                    ).sample.to(dtype=weight_dtype)


                    # perform guidance
                    if do_classifier_free_guidance:
                        # print("do_classifier_free_guidance")
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (
                            noise_pred_text - noise_pred_uncond
                        )

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample


                    # Blending
                    noise_source_latents = self.scheduler.add_noise(
                        source_latents, torch.randn_like(latents), t
                    )

                    latents = latents * latent_mask + noise_source_latents * (1 - latent_mask)

                    # call the callback, if provided
                    if i == len(time_steps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            callback(i, t, latents)

        ### vis cross attn
        # image shape fchw
        if vis_cross_attn:
            save_path = os.path.join(logdir,'visualization_denoise')
            os.makedirs(save_path, exist_ok=True)
            attention_output = attention_util.show_cross_attention_plus_org_img(self.tokenizer,prompt, image, editor, 32, ["up","down"],save_path=save_path)

        # 8. Post-processing
        image = self.decode_latents(latents)

        # 9. Run safety checker
        has_nsfw_concept = None

        # 10. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)
        torch.cuda.empty_cache()
        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)