Spaces:
Configuration error
Configuration error
File size: 41,620 Bytes
5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a a043943 5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
# code mostly taken from https://github.com/huggingface/diffusers
import inspect
from typing import Callable, List, Optional, Union
import PIL
import torch
import numpy as np
from einops import rearrange
from tqdm import tqdm
from diffusers.utils import deprecate, logging
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from .stable_diffusion import SpatioTemporalStableDiffusionPipeline
from diffusers.models import AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
import torch.nn.functional as F
from omegaconf import OmegaConf
from video_diffusion.prompt_attention.attention_register import register_attention_control
from video_diffusion.prompt_attention.attention_util import ST_Layout_Attn_Control,ST_Layout_Attn_ControlEdit,Attention_Record_Processor
from video_diffusion.prompt_attention import attention_util
from video_diffusion.prompt_attention.sd_study_utils import *
from video_diffusion.prompt_attention.attention_store import AttentionStore
from video_diffusion.common.image_util import save_gif_mp4_folder_type
from PIL import Image
from einops import rearrange
from ..models.controlnet3d import ControlNetModel
from ..models.unet_3d_condition import UNetPseudo3DConditionModel
from diffusers.schedulers import (
DDIMScheduler,
DDIMInverseScheduler,
)
import os
import nltk
nltk.download('punkt')
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class DDIMSpatioTemporalStableDiffusionPipeline(SpatioTemporalStableDiffusionPipeline):
r"""
Pipeline for text-to-video generation using Spatio-Temporal Stable Diffusion.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNetPseudo3DConditionModel,
controlnet: ControlNetModel,
scheduler: DDIMScheduler,
inverse_scheduler: DDIMInverseScheduler,
disk_store: bool=False,
logdir=None,
):
super().__init__(vae, text_encoder, tokenizer, unet, controlnet, scheduler,inverse_scheduler)
self.store_controller = attention_util.AttentionStore(disk_store=disk_store)
self.logdir=logdir
r"""
Pipeline for text-to-video generation using Spatio-Temporal Stable Diffusion.
"""
def check_inputs(self, prompt, height, width, callback_steps, strength=None):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if strength is not None:
if strength <= 0 or strength > 1:
raise ValueError(f"The value of strength should in (0.0, 1.0] but is {strength}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
@torch.no_grad()
def prepare_source_latents(self, image, batch_size, num_images_per_prompt,
# dtype, device,
text_embeddings,
generator=None):
# Not sure if image need to change device and type
# image = image.to(device=device, dtype=dtype)
print("generator is list:",isinstance(generator, list))
batch_size = batch_size * num_images_per_prompt
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
## org is
#init_latents = self.vae.encode(image).latent_dist.sample(generator)
init_latents = self.vae.encode(image).latent_dist.mean
init_latents = 0.18215 * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
# get latents
init_latents_bcfhw = rearrange(init_latents, "(b f) c h w -> b c f h w", b=batch_size)
return init_latents_bcfhw
def prepare_latents_ddim_inverted(self, image, batch_size,
source_prompt,
do_classifier_free_guidance,
control = None,
controlnet_conditioning_scale=None,
use_pnp=None,
cluster_inversion_feature = None,
**kwargs,
):
weight_dtype = image.dtype
device = self._execution_device
print('device',device)
timesteps = self.scheduler.timesteps
saved_features0 = []
saved_features1 = []
saved_features2 = []
saved_q4 = []
saved_k4 = []
saved_q5 = []
saved_k5 = []
saved_q6 = []
saved_k6 = []
saved_q7 = []
saved_k7 = []
saved_q8 = []
saved_k8 = []
saved_q9 = []
saved_k9 = []
#ddim inverse
num_inverse_steps = 50
self.inverse_scheduler.set_timesteps(num_inverse_steps, device=device)
inverse_timesteps, num_inverse_steps = self.get_inverse_timesteps(num_inverse_steps, 1, device)
num_warmup_steps = len(inverse_timesteps) - num_inverse_steps * self.inverse_scheduler.order
#============ddim inversion==========*
prompt_embeds = self._encode_prompt(
source_prompt,
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=None,
)
latents = self.prepare_video_latents(image, batch_size, self.unet.dtype, device)
bz, c, clip_length, downsample_height, downsample_width = latents.shape
del self.store_controller
self.store_controller = attention_util.AttentionStore()
attention_maps_list = []
self_attention_maps_list = []
cond_embeddings_list = []
editor = Attention_Record_Processor(additional_attention_store=self.store_controller)
attention_util.register_attention_control(self, editor, prompt_embeds, clip_length,downsample_height,downsample_width,ddim_inversion=True)
with self.progress_bar(total=num_inverse_steps-1) as progress_bar:
for i, t in enumerate(inverse_timesteps[1:]):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)
down_block_res_samples, mid_block_res_sample = self.controlnet(latent_model_input, t, encoder_hidden_states=prompt_embeds,controlnet_cond=control,return_dict=False)
down_block_res_samples = [
down_block_res_sample * controlnet_conditioning_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_conditioning_scale
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
**kwargs,
).sample
if use_pnp and t.cpu() in timesteps:
saved_features0.append(self.unet.up_blocks[1].resnets[0].out_layers_features.cpu())
saved_features1.append(self.unet.up_blocks[1].resnets[1].out_layers_features.cpu())
saved_features2.append(self.unet.up_blocks[2].resnets[0].out_layers_features.cpu())
saved_q4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.q.cpu())
saved_k4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.k.cpu())
saved_q5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.q.cpu())
saved_k5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.k.cpu())
saved_q6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.q.cpu())
saved_k6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.k.cpu())
saved_q7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.q.cpu())
saved_k7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.k.cpu())
saved_q8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.q.cpu())
saved_k8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.k.cpu())
saved_q9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.q.cpu())
saved_k9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.k.cpu())
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample.to(dtype=weight_dtype)
if i == len(inverse_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0):
progress_bar.update()
if use_pnp:
saved_features0.reverse()
saved_features1.reverse()
saved_features2.reverse()
saved_q4.reverse()
saved_k4.reverse()
saved_q5.reverse()
saved_k5.reverse()
saved_q6.reverse()
saved_k6.reverse()
saved_q7.reverse()
saved_k7.reverse()
saved_q8.reverse()
saved_k8.reverse()
saved_q9.reverse()
saved_k9.reverse()
attn_inversion_dict = {
'features0': saved_features0, 'features1': saved_features1, 'features2': saved_features2,
'q4': saved_q4,'k4': saved_k4,'q5': saved_q5,'k5': saved_k5,'q6': saved_q6,'k6': saved_k6,
'q7': saved_q7,'k7': saved_k7,'q8': saved_q8,'k8': saved_k8,'q9': saved_q9,'k9': saved_k9
}
else:
attn_inversion_dict = None
if cluster_inversion_feature:
logger.info('cluster ddim inversion feature')
inv_self_avg_dict={}
inv_cross_avg_dict={}
element_name = 'attn'
attn_size = 32
for element_name in ['attn']:
inv_self_avg_dict[element_name]={}
inv_cross_avg_dict[element_name]={}
self_attn_avg = editor.aggregate_attention(from_where=("up", "down", "mid"),
res=attn_size,is_cross=False)
cross_attn_avg = editor.aggregate_attention(from_where=("up", "down", "mid"),
res=attn_size,is_cross=True)
print('self_attn_avg',self_attn_avg.shape)
print('cross_attn_avg', cross_attn_avg.shape)
inv_self_avg_dict[element_name][attn_size]=self_attn_avg
inv_cross_avg_dict[element_name][attn_size]=cross_attn_avg
os.makedirs(os.path.join(self.logdir, "attn_inv"), exist_ok=True)
os.makedirs(os.path.join(self.logdir, "sd_study"), exist_ok=True)
with open(os.path.join(self.logdir,
"attn_inv/inv_self_avg_dict.pkl"),
'wb') as f:
pkl.dump(inv_self_avg_dict, f)
with open(os.path.join(self.logdir,
"attn_inv/inv_cross_avg_dict.pkl"),
'wb') as f:
pkl.dump(inv_cross_avg_dict, f)
num_segments=3
draw_pca(inv_self_avg_dict, resolution=32, dict_key='attn',
save_path=os.path.join(self.logdir, 'sd_study'),
special_name='inv_self')
run_clusters(inv_self_avg_dict, resolution=32, dict_key='attn',
save_path=os.path.join(self.logdir, 'sd_study'),
special_name='inv_self',num_segments=num_segments)
cross_attn_visualization = attention_util.show_cross_attention_plus_org_img(self.tokenizer, source_prompt,
image, editor, 32, ["up", "down", "mid"], save_path= os.path.join(self.logdir,'sd_study'),attention_maps=cross_attn_avg)
dict_key='attn'
special_name='inv_self'
resolution = 32
threshold=0.1
tokenized_prompt = nltk.word_tokenize(source_prompt)
nouns = [(i, word) for (i, (word, pos)) in enumerate(nltk.pos_tag(tokenized_prompt)) if pos[:2] == 'NN']
print(nouns)
npy_name=f'cluster_{dict_key}_{resolution}_{special_name}.npy'
save_path=os.path.join(self.logdir, 'sd_study')
abs_filename=os.path.join(self.logdir, "attn_inv", f"inv_cross_avg_dict.pkl")
inv_cross_avg_dict=read_pkl(abs_filename)
video_cross_attention = inv_cross_avg_dict['attn'][32]
video_clusters=np.load(os.path.join(save_path, npy_name))
t = video_clusters.shape[0]
for i in range(t):
clusters = video_clusters[i]
cross_attention = video_cross_attention[i]
c2noun, c2mask = cluster2noun_(clusters, threshold, num_segments, nouns,cross_attention)
print('c2noun',c2noun)
merged_mask={}
for index in range(len(c2noun)):
# mask_ = merged_mask[class_name]
item=c2noun[index]
mask_ = c2mask[index]
mask_ = torch.from_numpy(mask_)
mask_ = F.interpolate(mask_.float().unsqueeze(0).unsqueeze(0), size=512, mode='nearest').round().bool().squeeze(0).squeeze(0)
output_name = os.path.join(f"{save_path}",
f"frame_{i}_{item}_{index}.png")
save_mask(mask_, output_name)
return latents, attn_inversion_dict
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def get_inverse_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
# safety for t_start overflow to prevent empty timsteps slice
if t_start == 0:
return self.inverse_scheduler.timesteps, num_inference_steps
timesteps = self.inverse_scheduler.timesteps[:-t_start]
return timesteps, num_inference_steps - t_start
def prepare_latents(
self,
batch_size,
num_channels_latents,
frames,
height,
width,
dtype,
device,
generator,
latents=None,
):
print("self.vae_scale_factor",self.vae_scale_factor)
shape = (
batch_size,
num_channels_latents,
frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
rand_device = "cpu" if device.type == "mps" else device
if isinstance(generator, list):
shape = (1,) + shape[1:]
latents = [
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
for i in range(batch_size)
]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(
device
)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_video_latents(self, frames, batch_size, dtype, device, generator=None):
if not isinstance(frames, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(frames)}"
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
latents = [
self.vae.encode(frames[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
latents = torch.cat(latents, dim=0)
else:
latents = self.vae.encode(frames).latent_dist.sample(generator)
latents = self.vae.config.scaling_factor * latents
latents = rearrange(latents, "(b f) c h w ->b c f h w", b=batch_size)
return latents
def clean_features(self):
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = None
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = None
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = None
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = None
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = None
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = None
def _get_attention_type(self):
sub_nets = self.unet.named_children()
for net in sub_nets:
if hasattr(net[1], 'children'):
for net in net[1].named_children():
if hasattr(net[1], 'children'):
for net in net[1].named_children():
if net[1].__class__.__name__ == "SpatioTemporalTransformerModel":
for net in net[1].named_children():
if hasattr(net[1], 'children'):
for net in net[1].named_children():
if net[1].__class__.__name__ == "SpatioTemporalTransformerBlock":
for net in net[1].named_children():
if net[1].__class__.__name__ == "SparseCausalAttention":
attention_type = "SparseCausalAttention"
elif net[1].__class__.__name__ == "FullyFrameAttention":
attention_type = "FullyFrameAttention"
#print("attention_type:",attention_type)
return attention_type
def _prepare_attention_layout(self,bsz,height,width,layouts,prompts,clip_length,attention_type,device):
## current layouts f s c h w
## org layouts s c h w
#print("prompt:",prompts)
# sp_sz =self.unet.sample_size
sp_sz = height*width
frames, seg_cls, c, h ,w = layouts.shape
text_input = self.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
cond_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = self.tokenizer([""]*bsz, padding="max_length", max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
break
###########################
###### prep for sreg ######
###########################
sreg_maps = {}
reg_sizes = {}
reg_sizes_c = {}
device = layouts.device
frame_index_pre = torch.arange(frames)+(-1)
frame_index_pre = frame_index_pre.clip(0, frames-1)
for r in range(4):
layouts_s_frames = []
if attention_type == "SparseCausalAttention":
layouts_s_sparse_attn = []
h = int(height/np.power(2,r))
w= int(width/np.power(2,r))
#layouts torch.Size([70, 2, 1, 64, 64])
# layouts_interpolate = F.interpolate(layouts.squeeze(2), (res, res), mode='nearest').unsqueeze(2)
layouts_interpolate = F.interpolate(layouts.squeeze(2), (h, w), mode='nearest').unsqueeze(2)
layouts_interpolate = layouts_interpolate.view(frames,seg_cls,1,-1) ## frames,seg_cls,1,res^2
### implementation of sparse casual attn and fully frame attn
for i in range(frames):
#layouts_f = layouts[i]
layouts_s = layouts_interpolate[i]
if attention_type == "SparseCausalAttention":
### prepare for SparseCausalAttention query, key/value
query= layouts_s
query = query.view(query.size(0),-1,1).to(device) ### segcls,res^2,1 #[cls, 4096, 1]
### key should be segcls,1,2xres^2
key = torch.cat((layouts_interpolate[0],layouts_interpolate[frame_index_pre[i]]),dim=-1).to(device)
#([cls, 1, 8192])
layouts_s_cross_frame_attn= (query * key).sum(0).unsqueeze(0).repeat(bsz,1,1) ## 1,4096,8192
layouts_s_sparse_attn.append(layouts_s_cross_frame_attn)
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
layouts_s_frames.append(layouts_s)
layouts_s_frames = torch.stack(layouts_s_frames,dim=0)
if attention_type == "SparseCausalAttention":
layouts_s_sparse_attn = torch.stack(layouts_s_sparse_attn,dim=0)
sreg_maps[h*w] = layouts_s_sparse_attn
reg_sizes[h*w] = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(clip_length, 2))
reg_sizes_c[h*w] = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(clip_length, 2))
#### code for check error#####
# num_nonzero = torch.count_nonzero(layouts_s_frames)
# print("num_nonzero",num_nonzero)
# print("layouts_s_frames",layouts_s_frames.shape)
# print("layouts_s_frames",layouts_s_frames)
# print("reg_size final shape:", (1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))).shape)
# print("reg_size", (1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))))
#### code for check error#####
#print("layouts_s",layouts_s.shape)
#print("layouts_s.view(layouts_s.size(0),-1,1)",*layouts_s.view(layouts_s.size(0),-1,1).shape)
if attention_type == "FullyFrameAttention":
layouts_s= rearrange(layouts_interpolate,"f s c res -> s c (f res)")
if r==0:
layout_s = None
reg_sizes[h*w] = None
sreg_maps[h*w] = None
reg_sizes_c[h*w] = None
else:
layouts_s = (layouts_s*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1).to(torch.float16)
sreg_maps[h*w] = layouts_s
reg_sizes[h*w] = 1-1.*layouts_s.sum(-1, keepdim=True)/((h*clip_length)*(w*clip_length))
reg_sizes_c[h*w] = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(h*w)
#print("layouts_s",layouts_s.shape)
# if res == 64:
# reg_sizes[np.power(res, 2)] = None
# else:
# reg_sizes[np.power(res, 2)] = 1-1.*layouts_s.sum(-1, keepdim=True)/(np.power(res*clip_length, 2))
# #sreg_maps[np.power(res, 2)] = layouts_s_frames
# sreg_maps[np.power(res, 2)] = layouts_s
# reg_sizes_c[np.power(res, 2)] = 1-1.*layouts_s_frames.sum(-1, keepdim=True)/(np.power(res, 2))
###########################
###### prep for creg ######
###########################
pww_maps = torch.zeros(frames, 1, 77, height, width).to(device)
for i in range(1,len(prompts)):
wlen = text_input['length'][i] - 2
widx = text_input['input_ids'][i][1:1+wlen]
for j in range(77):
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
for f in range(frames):
pww_maps[f,:,j:j+wlen,:,:] = layouts[f,i-1:i] # frames, seg_cls, c, h ,w = layouts.shape
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
print(prompts[i], i, '-th segment is handled.')
break
# print("cond_embeddings",cond_embeddings)
creg_maps = {}
for r in range(4):
pww_maps_frames = []
h = int(height/np.power(2,r))
w = int(width/np.power(2,r))
for i in range(frames):
pww_map_frame = pww_maps[i]
pww_map_frame.view(1,77,height,width)
pww_map_frame = F.interpolate(pww_map_frame, (h, w), mode='nearest')
pww_map_frame = pww_map_frame.view(1, 77, -1).permute(0, 2, 1).repeat(bsz,1,1) # 重新调整形状
pww_maps_frames.append(pww_map_frame)
# 使用 torch.cat 连接处理后的所有帧
layout_c = torch.stack(pww_maps_frames, dim=0)
# print("layout_c",layout_c)
creg_maps[h*w] = layout_c
###########################
#### prep for text_emb ####
###########################
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
return text_cond, sreg_maps, creg_maps, reg_sizes, reg_sizes_c
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
latent_mask: Union[torch.FloatTensor, PIL.Image.Image] = None,
layouts: Union[torch.FloatTensor, PIL.Image.Image] = None,
blending_percentage: float=0.25,
modulated_percentage: float=0.3,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = None,
num_inference_steps: int = 50,
clip_length: int = 8,
guidance_scale: float = 7.5,
source_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
control: Optional[torch.FloatTensor] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
logdir: str=None,
controlnet_conditioning_scale: float = 1.0,
use_pnp: bool = False,
cluster_inversion_feature: bool = False,
vis_cross_attn: bool = False,
attn_inversion_dict: dict=None,
**kwargs,
):
# 0. Default height and width to unet
t , c , height, width = image.shape
prompt = OmegaConf.to_container(prompt, resolve=True)
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps, strength)
# 2. Define call parameters
batch_size = 1
weight_dtype = image.dtype
device = self._execution_device
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
self.scheduler.set_timesteps(num_inference_steps, device=device)
if latents is None:
latents, attn_inversion_dict = self.prepare_latents_ddim_inverted(
image, batch_size, source_prompt,
do_classifier_free_guidance, generator,
control, controlnet_conditioning_scale, use_pnp, cluster_inversion_feature
)
print("use inversion latents")
## prepare text embedding, self attention map, cross attention map
_, _, _, downsample_height, downsample_width = latents.shape
attention_type = self._get_attention_type()
text_cond, sreg_maps, creg_maps, reg_sizes,reg_sizes_c = self._prepare_attention_layout(batch_size,downsample_height,downsample_width,
layouts,prompt,clip_length,attention_type,device)
time_steps = self.scheduler.timesteps
#============do visualization for st-layout attn===============#
self.store_controller = attention_util.AttentionStore()
editor = ST_Layout_Attn_ControlEdit(text_cond=text_cond,sreg_maps=sreg_maps,creg_maps=creg_maps,reg_sizes=reg_sizes,reg_sizes_c=reg_sizes_c,
time_steps=time_steps,clip_length=clip_length,attention_type=attention_type,
additional_attention_store=self.store_controller,
save_self_attention = True,
disk_store = False,
video = image,
)
attention_util.register_attention_control(self, editor, text_cond, clip_length, downsample_height,downsample_width,ddim_inversion=False)
#============do visualization for st-layout attn===============#
# editor = ST_Layout_Attn_Control(text_cond=text_cond,sreg_maps=sreg_maps,creg_maps=creg_maps,reg_sizes=reg_sizes,reg_sizes_c=reg_sizes_c,
# time_steps=time_steps,clip_length=clip_length,attention_type=attention_type)
# register_attention_control(self, editor, text_cond, clip_length,downsample_height,downsample_width,ddim_inversion=False)
# 3. Encode input prompt
prompt = prompt[:1]
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
source_latents = self.prepare_source_latents(
image, batch_size, num_images_per_prompt,
# text_embeddings.dtype, device,
text_embeddings,
generator,
)
# 7. Denoising loop
num_warmup_steps = len(time_steps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps* (1-blending_percentage)) as progress_bar:
for i, t in enumerate(time_steps[int(len(time_steps) * blending_percentage):]):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# inject features
if use_pnp and i < kwargs["inject_step"]:
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = attn_inversion_dict['features0'][i].to(device)
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = attn_inversion_dict['features1'][i].to(device)
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = attn_inversion_dict['features2'][i].to(device)
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q4'][i].to(device)
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k4'][i].to(device)
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q5'][i].to(device)
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k5'][i].to(device)
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q6'][i].to(device)
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k6'][i].to(device)
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q7'][i].to(device)
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k7'][i].to(device)
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q8'][i].to(device)
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k8'][i].to(device)
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = attn_inversion_dict['q9'][i].to(device)
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = attn_inversion_dict['k9'][i].to(device)
else:
self.clean_features()
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
controlnet_cond=control,
return_dict=False,
)
down_block_res_samples = [
down_block_res_sample * controlnet_conditioning_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_conditioning_scale
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
**kwargs,
).sample.to(dtype=weight_dtype)
# perform guidance
if do_classifier_free_guidance:
# print("do_classifier_free_guidance")
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# Blending
noise_source_latents = self.scheduler.add_noise(
source_latents, torch.randn_like(latents), t
)
latents = latents * latent_mask + noise_source_latents * (1 - latent_mask)
# call the callback, if provided
if i == len(time_steps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
### vis cross attn
# image shape fchw
if vis_cross_attn:
save_path = os.path.join(logdir,'visualization_denoise')
os.makedirs(save_path, exist_ok=True)
attention_output = attention_util.show_cross_attention_plus_org_img(self.tokenizer,prompt, image, editor, 32, ["up","down"],save_path=save_path)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
has_nsfw_concept = None
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
torch.cuda.empty_cache()
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|