Spaces:
Configuration error
Configuration error
File size: 34,279 Bytes
5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
# code mostly taken from https://github.com/huggingface/diffusers
from dataclasses import dataclass
from typing import Optional, Callable
import math
import torch
from torch import nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers import ModelMixin
from diffusers.models.cross_attention import CrossAttention
from diffusers.models.attention import FeedForward, AdaLayerNorm
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
import numpy as np
import os
from PIL import Image
import glob
@dataclass
class SpatioTemporalTransformerModelOutput(BaseOutput):
"""torch.FloatTensor of shape [batch x channel x frames x height x width]"""
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
use_temporal: bool = True,
model_config: dict = {},
**transformer_kwargs,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
SpatioTemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
use_temporal=use_temporal,
model_config=model_config,
**transformer_kwargs,
)
for d in range(num_layers)
]
)
# Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(
self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True, **kwargs,
):
# 1. Input
clip_length = None
is_video = hidden_states.ndim == 5
if is_video:
clip_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0)
else:
# To adapt to classifier-free guidance where encoder_hidden_states=2
batch_size = hidden_states.shape[0]//encoder_hidden_states.shape[0]
encoder_hidden_states = encoder_hidden_states.repeat_interleave(batch_size, 0)
*_, h, w = hidden_states.shape
residual = hidden_states
# check resolution
height = hidden_states.shape[-2]
width = hidden_states.shape[-1]
trajs = {}
trajs["traj"] = kwargs["trajs"]["traj{}".format(height)]
trajs["mask"] = kwargs["trajs"]["mask{}".format(height)]
# trajs["t"] = kwargs["t"]
trajs["old_qk"] = kwargs["old_qk"]
trajs['flatten_res'] = kwargs['flatten_res']
trajs['height'] = height
trajs['width'] = width
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") # (bf) (hw) c
else:
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states, # [16, 4096, 320]
encoder_hidden_states=encoder_hidden_states, # ([1, 77, 768]
timestep=timestep,
clip_length=clip_length,
**trajs,
)
# 3. Output
if not self.use_linear_projection:
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
output = hidden_states + residual
if is_video:
output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length)
if not return_dict:
return (output,)
return SpatioTemporalTransformerModelOutput(sample=output)
import copy
class SpatioTemporalTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
use_sparse_causal_attention: bool = True,
use_temporal:bool = False,
temporal_attention_position: str = "after_feedforward",
model_config: dict = {}
):
super().__init__()
self.use_temporal=use_temporal
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.use_sparse_causal_attention = use_sparse_causal_attention
# For safety, freeze the model_config
self.model_config = copy.deepcopy(model_config)
if 'least_sc_channel' in model_config:
if dim< model_config['least_sc_channel']:
self.model_config['SparseCausalAttention_index'] = []
self.temporal_attention_position = temporal_attention_position
temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"]
if temporal_attention_position not in temporal_attention_positions:
raise ValueError(
f"`temporal_attention_position` must be one of {temporal_attention_positions}"
)
# 1. Spatial-Attn
# spatial_attention = SparseCausalAttention if use_sparse_causal_attention else CrossAttention
# self.attn1 = spatial_attention(
# query_dim=dim,
# heads=num_attention_heads,
# dim_head=attention_head_dim,
# dropout=dropout,
# bias=attention_bias,
# cross_attention_dim=cross_attention_dim if only_cross_attention else None,
# upcast_attention=upcast_attention,
# )
# is a self-attention
# Fully
self.attn1 = FullyFrameAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
)
self.norm1 = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
# 2. Cross-Attn
if cross_attention_dim is not None:
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
) # is self-attn if encoder_hidden_states is none
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
else:
self.attn2 = None
self.norm2 = None
# 3. Temporal-Attn
if use_temporal:
self.attn_temporal = CrossAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
)
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data) # initialize as an identity function
self.norm_temporal = (
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
)
else:
self.attn_temporal=None
# efficient_attention_backward_cutlass is not implemented for large channels
self.use_xformers = (dim <= 320) or "3090" not in torch.cuda.get_device_name(0)
# 4. Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
if use_memory_efficient_attention_xformers is True:
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
else:
pass
except Exception as e:
raise e
# self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
# self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
# self.attn_temporal._use_memory_efficient_attention_xformers = (
# use_memory_efficient_attention_xformers
# ), # FIXME: enabling this raises CUDA ERROR. Gotta dig in.
def forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
attention_mask=None,
clip_length=None,
**kwargs,
):
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
)
# Update kwargs instead of creating a new dictionary
kwargs.update(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
)
# kwargs = dict(
# hidden_states=norm_hidden_states,
# attention_mask=attention_mask,
# )
if self.only_cross_attention:
kwargs.update(encoder_hidden_states=encoder_hidden_states)
if self.use_sparse_causal_attention:
kwargs.update(clip_length=clip_length)
if 'SparseCausalAttention_index' in self.model_config.keys():
kwargs.update(SparseCausalAttention_index = self.model_config['SparseCausalAttention_index'])
hidden_states = hidden_states + self.attn1(**kwargs)
if clip_length is not None and self.temporal_attention_position == "after_spatial":
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
# print('hidden_states after 1 self attention',hidden_states.shape)
if self.attn2 is not None:
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm2(hidden_states)
)
# print('norm_hidden_states',norm_hidden_states.shape)
hidden_states = (
self.attn2(
norm_hidden_states, # [16, 4096, 320]
encoder_hidden_states=encoder_hidden_states, # [1, 77, 768]
attention_mask=attention_mask,
)
+ hidden_states
)
if clip_length is not None and self.temporal_attention_position == "after_cross" and self.attn_temporal is not None:
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
# if clip_length is not None and self.temporal_attention_position == "after_feedforward" and self.attn_temporal is not None:
# hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
return hidden_states
def apply_temporal_attention(self, hidden_states, timestep, clip_length):
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length)
norm_hidden_states = (
self.norm_temporal(hidden_states, timestep)
if self.use_ada_layer_norm
else self.norm_temporal(hidden_states)
)
hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
def generate_dynamic_window_index():
windows = [(0,5), (6,13), (14,21), (22,31), (32,39), (40,51), (52,58), (59,69)]
video_index = []
for start, end in windows:
for i in range(start, end + 1):
video_index.append(start)
return video_index
def generate_fix_anchor_frames(clip_length, interval):
# 创建锚点索引列表
anchors = list(range(0, clip_length, interval))
# 确保最后一个索引不超过clip_length
if anchors[-1] >= clip_length:
anchors[-1] = clip_length - 1
# 生成每个锚点重复clip_length次的列表
frame_index_list = [[anchor] * clip_length for anchor in anchors]
return frame_index_list
def generate_random_anchor_frame_index(clip_length, interval):
# 计算每个间隔的起始帧索引
interval_starts = torch.arange(0, clip_length, interval)
# 初始化锚点帧列表
frame_index_list = []
# 在每个间隔内随机选择一个帧索引
for start in interval_starts:
# 确保随机索引不超过clip_length
end = min(start + interval, clip_length)
anchor_frame = torch.randint(start, end, (1,)).item()
# 生成重复clip_length次的锚点帧索引列表
frame_index = [anchor_frame] * clip_length
frame_index_list.append(frame_index)
return frame_index_list
class SparseCausalAttention(CrossAttention):
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
clip_length: int = None,
SparseCausalAttention_index: list = [-1, 'first'] #list = ['anchor_interval8',0] #list = [0] #list = [-1, 'first','dynamic']
):
if (
self.added_kv_proj_dim is not None
or encoder_hidden_states is not None
or attention_mask is not None
):
raise NotImplementedError
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
if clip_length is not None:
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)
# *********************** Start of Spatial-temporal attention **********
frame_index_list = []
# print(f'SparseCausalAttention_index {str(SparseCausalAttention_index)}')
if len(SparseCausalAttention_index) > 0:
for index in SparseCausalAttention_index:
if isinstance(index, str):
if index == 'first':
frame_index = [0] * clip_length
if index == 'last':
frame_index = [clip_length-1] * clip_length
if (index == 'mid') or (index == 'middle'):
frame_index = [int(clip_length-1)//2] * clip_length
if index == "dynamic":
frame_index = generate_dynamic_window_index()
if index == "anchor_interval8":
frame_index = generate_fix_anchor_frames(clip_length,8)
else:
assert isinstance(index, int), 'relative index must be int'
frame_index = torch.arange(clip_length) + index
frame_index = frame_index.clip(0, clip_length-1)
if isinstance(frame_index[0], list):
frame_index_list = frame_index
else:
frame_index_list.append(frame_index)
# print("frame_index_list",frame_index_list)
# print("key before concat",key.shape) #[1, frame, 4096, 320]
key = torch.cat([ key[:, frame_index] for frame_index in frame_index_list
], dim=2)
value = torch.cat([ value[:, frame_index] for frame_index in frame_index_list
], dim=2)
# *********************** End of Spatial-temporal attention **********
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(
query, key, value, hidden_states.shape[1], dim, attention_mask
)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states
class FullyFrameAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
upcast_attention: bool = False,
upcast_softmax: bool = False,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self._slice_size = heads
# self._slice_size = None
self._use_memory_efficient_attention_xformers = False
self.added_kv_proj_dim = added_kv_proj_dim
if norm_num_groups is not None:
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
else:
self.group_norm = None
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
self.q = None
self.inject_q = None
self.k = None
self.inject_k = None
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def set_attention_slice(self, slice_size):
if slice_size is not None and slice_size > self.sliceable_head_dim:
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
self._slice_size = slice_size
def _attention(self, query, key, value, attention_mask=None):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
if self.upcast_softmax:
attention_scores = attention_scores.float()
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
)
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
if self.upcast_attention:
query_slice = query_slice.float()
key_slice = key_slice.float()
attn_slice = torch.baddbmm(
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
query_slice,
key_slice.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
if attention_mask is not None:
attn_slice = attn_slice + attention_mask[start_idx:end_idx]
if self.upcast_softmax:
attn_slice = attn_slice.float()
attn_slice = attn_slice.softmax(dim=-1)
# cast back to the original dtype
attn_slice = attn_slice.to(value.dtype)
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def reshape_heads_to_batch_dim3(self, tensor):
batch_size1, batch_size2, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size1, batch_size2, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 3, 1, 2, 4)
return tensor
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
# TODO attention_mask
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, clip_length=None, inter_frame=False,**kwargs):
batch_size, sequence_length, _ = hidden_states.shape
encoder_hidden_states = encoder_hidden_states
# h = w = int(math.sqrt(sequence_length))
h = kwargs['height']
w = kwargs['width']
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states) # (bf) x d(hw) x c
self.q = query
if self.inject_q is not None:
query = self.inject_q
dim = query.shape[-1]
query_old = query.clone()
dim = query.shape[-1]
# All frames
query = rearrange(query, "(b f) d c -> b (f d) c", f=clip_length)
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
self.k = key
if self.inject_k is not None:
key = self.inject_k
key_old = key.clone()
value = self.to_v(encoder_hidden_states)
if inter_frame:
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]]
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]]
key = rearrange(key, "b f d c -> b (f d) c",)
value = rearrange(value, "b f d c -> b (f d) c")
else:
# All frames
key = rearrange(key, "(b f) d c -> b (f d) c", f=clip_length)
value = rearrange(value, "(b f) d c -> b (f d) c", f=clip_length)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
if [h,w] in kwargs['flatten_res']:
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=clip_length)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if kwargs["old_qk"] == 1:
query = query_old
key = key_old
else:
query = hidden_states
key = hidden_states
value = hidden_states
traj = kwargs["traj"]
traj = rearrange(traj, '(f n) l d -> f n l d', f=clip_length, n=sequence_length)
mask = rearrange(kwargs["mask"], '(f n) l -> f n l', f=clip_length, n=sequence_length)
mask = torch.cat([mask[:, :, 0].unsqueeze(-1), mask[:, :, -clip_length+1:]], dim=-1)
# print('traj',traj.shape)
# print('mask',mask.shape)
traj_key_sequence_inds = torch.cat([traj[:, :, 0, :].unsqueeze(-2), traj[:, :, -clip_length+1:, :]], dim=-2)
t_inds = traj_key_sequence_inds[:, :, :, 0]
x_inds = traj_key_sequence_inds[:, :, :, 1]
y_inds = traj_key_sequence_inds[:, :, :, 2]
query_tempo = query.unsqueeze(-2)
_key = rearrange(key, '(b f) (h w) d -> b f h w d', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
_value = rearrange(value, '(b f) (h w) d -> b f h w d', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
key_tempo = _key[:, t_inds, x_inds, y_inds]
value_tempo = _value[:, t_inds, x_inds, y_inds]
key_tempo = rearrange(key_tempo, 'b f n l d -> (b f) n l d')
value_tempo = rearrange(value_tempo, 'b f n l d -> (b f) n l d')
mask = rearrange(torch.stack([mask, mask]), 'b f n l -> (b f) n l')
mask = mask[:,None].repeat(1, self.heads, 1, 1).unsqueeze(-2)
attn_bias = torch.zeros_like(mask, dtype=key_tempo.dtype) # regular zeros_like
attn_bias[~mask] = -torch.inf
# print('attn_bias',attn_bias.shape)
# print('query_tempo',query_tempo.shape)
# print('key_tempo',key_tempo.shape)
# flow attention
query_tempo = self.reshape_heads_to_batch_dim3(query_tempo)
key_tempo = self.reshape_heads_to_batch_dim3(key_tempo)
value_tempo = self.reshape_heads_to_batch_dim3(value_tempo)
attn_matrix2 = query_tempo @ key_tempo.transpose(-2, -1) / math.sqrt(query_tempo.size(-1)) + attn_bias
attn_matrix2 = F.softmax(attn_matrix2, dim=-1)
out = (attn_matrix2@value_tempo).squeeze(-2)
hidden_states = rearrange(out,'(b f) k (h w) d -> b (f h w) (k d)', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
# All frames
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=clip_length)
return hidden_states
|