File size: 34,279 Bytes
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
# code mostly taken from https://github.com/huggingface/diffusers
from dataclasses import dataclass
from typing import Optional, Callable
import math
import torch
from torch import nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers import ModelMixin
from diffusers.models.cross_attention import CrossAttention
from diffusers.models.attention import FeedForward, AdaLayerNorm
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available

from einops import rearrange
import numpy as np
import os 
from PIL import Image
import glob


@dataclass
class SpatioTemporalTransformerModelOutput(BaseOutput):
    """torch.FloatTensor of shape [batch x channel x frames x height x width]"""

    sample: torch.FloatTensor


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        use_temporal: bool = True,
        model_config: dict = {},
        **transformer_kwargs,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # Define input layers
        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                SpatioTemporalTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    use_temporal=use_temporal,
                    model_config=model_config,
                    **transformer_kwargs,
                )
                for d in range(num_layers)
            ]
        )

        # Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(
        self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True, **kwargs,
    ):
        # 1. Input
        clip_length = None
        is_video = hidden_states.ndim == 5
        if is_video:
            clip_length = hidden_states.shape[2]
            hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
            encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0)
        else:
            # To adapt to classifier-free guidance where encoder_hidden_states=2
            batch_size = hidden_states.shape[0]//encoder_hidden_states.shape[0]
            encoder_hidden_states = encoder_hidden_states.repeat_interleave(batch_size, 0)
        *_, h, w = hidden_states.shape
        residual = hidden_states

        # check resolution
 
        height = hidden_states.shape[-2]
        width = hidden_states.shape[-1]
        trajs = {}
        trajs["traj"] = kwargs["trajs"]["traj{}".format(height)]
        trajs["mask"] = kwargs["trajs"]["mask{}".format(height)]
        # trajs["t"] = kwargs["t"]
        trajs["old_qk"] = kwargs["old_qk"]
        trajs['flatten_res'] = kwargs['flatten_res']
        trajs['height'] = height
        trajs['width'] = width

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") # (bf) (hw) c
        else:
            hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
            hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states, # [16, 4096, 320]
                encoder_hidden_states=encoder_hidden_states, # ([1, 77, 768]
                timestep=timestep,
                clip_length=clip_length,
                **trajs,
            )

        # 3. Output
        if not self.use_linear_projection:
            hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous()

        output = hidden_states + residual
        if is_video:
            output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length)

        if not return_dict:
            return (output,)

        return SpatioTemporalTransformerModelOutput(sample=output)

import copy
class SpatioTemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        use_sparse_causal_attention: bool = True,
        use_temporal:bool = False,
        temporal_attention_position: str = "after_feedforward",
        model_config: dict = {}
    ):
        super().__init__()
        self.use_temporal=use_temporal
        self.only_cross_attention = only_cross_attention
        self.use_ada_layer_norm = num_embeds_ada_norm is not None
        self.use_sparse_causal_attention = use_sparse_causal_attention
        # For safety, freeze the model_config
        self.model_config = copy.deepcopy(model_config)
        if 'least_sc_channel' in model_config:
            if dim< model_config['least_sc_channel']:
                self.model_config['SparseCausalAttention_index'] = []
        
        self.temporal_attention_position = temporal_attention_position
        temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"]
        if temporal_attention_position not in temporal_attention_positions:
            raise ValueError(
                f"`temporal_attention_position` must be one of {temporal_attention_positions}"
            )

        # 1. Spatial-Attn
        # spatial_attention = SparseCausalAttention if use_sparse_causal_attention else CrossAttention
        # self.attn1 = spatial_attention(
        #     query_dim=dim,
        #     heads=num_attention_heads,
        #     dim_head=attention_head_dim,
        #     dropout=dropout,
        #     bias=attention_bias,
        #     cross_attention_dim=cross_attention_dim if only_cross_attention else None,
        #     upcast_attention=upcast_attention,
        # )  
        # is a self-attention
            # Fully
        self.attn1 = FullyFrameAttention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )
        self.norm1 = (
            AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.attn2 = CrossAttention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )  # is self-attn if encoder_hidden_states is none
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
            )
        else:
            self.attn2 = None
            self.norm2 = None

        # 3. Temporal-Attn
        if use_temporal:
            self.attn_temporal = CrossAttention(
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )
            nn.init.zeros_(self.attn_temporal.to_out[0].weight.data)  # initialize as an identity function
            self.norm_temporal = (
                AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
            )
        else:
            self.attn_temporal=None

        # efficient_attention_backward_cutlass is not implemented for large channels
        self.use_xformers = (dim <= 320) or "3090" not in torch.cuda.get_device_name(0)

        # 4. Feed-forward
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
        self.norm3 = nn.LayerNorm(dim)

    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None):
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                if use_memory_efficient_attention_xformers is True:
                    
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                else:
                    
                    pass
            except Exception as e:
                raise e
            # self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            # self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
            self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers 
            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers 
            # self.attn_temporal._use_memory_efficient_attention_xformers = (
            #     use_memory_efficient_attention_xformers
            # ),  # FIXME: enabling this raises CUDA ERROR. Gotta dig in.

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        attention_mask=None,
        clip_length=None,
        **kwargs,
    ):
        # 1. Self-Attention
        norm_hidden_states = (
            self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
        )

        # Update kwargs instead of creating a new dictionary
        kwargs.update(
            hidden_states=norm_hidden_states,
            attention_mask=attention_mask,
        )
        # kwargs = dict(
        #     hidden_states=norm_hidden_states,
        #     attention_mask=attention_mask,
        # )
        if self.only_cross_attention:
            kwargs.update(encoder_hidden_states=encoder_hidden_states)
        if self.use_sparse_causal_attention:
            kwargs.update(clip_length=clip_length)
        if 'SparseCausalAttention_index' in self.model_config.keys():
            kwargs.update(SparseCausalAttention_index = self.model_config['SparseCausalAttention_index'])
        
        hidden_states = hidden_states + self.attn1(**kwargs)

        if clip_length is not None and self.temporal_attention_position == "after_spatial":
            hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)
        # print('hidden_states after 1 self attention',hidden_states.shape)
        if self.attn2 is not None:
            # 2. Cross-Attention
            norm_hidden_states = (
                self.norm2(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm2(hidden_states)
            )
            # print('norm_hidden_states',norm_hidden_states.shape)
            hidden_states = (
                self.attn2(
                    norm_hidden_states, # [16, 4096, 320]
                    encoder_hidden_states=encoder_hidden_states, # [1, 77, 768]
                    attention_mask=attention_mask,
                )
                + hidden_states
            )

        if clip_length is not None and self.temporal_attention_position == "after_cross" and self.attn_temporal is not None:
            hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        # if clip_length is not None and self.temporal_attention_position == "after_feedforward" and self.attn_temporal is not None:
        #     hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length)

        return hidden_states

    def apply_temporal_attention(self, hidden_states, timestep, clip_length):
        d = hidden_states.shape[1]
        hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length)
        norm_hidden_states = (
            self.norm_temporal(hidden_states, timestep)
            if self.use_ada_layer_norm
            else self.norm_temporal(hidden_states)
        )
        hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
        return hidden_states


def generate_dynamic_window_index():
    windows = [(0,5), (6,13), (14,21), (22,31), (32,39), (40,51), (52,58), (59,69)]
    video_index = []

    for start, end in windows:
        for i in range(start, end + 1):
            video_index.append(start)

    return video_index

def generate_fix_anchor_frames(clip_length, interval):
    # 创建锚点索引列表
    anchors = list(range(0, clip_length, interval))
    # 确保最后一个索引不超过clip_length
    if anchors[-1] >= clip_length:
        anchors[-1] = clip_length - 1
    # 生成每个锚点重复clip_length次的列表
    frame_index_list = [[anchor] * clip_length for anchor in anchors]
    return frame_index_list

def generate_random_anchor_frame_index(clip_length, interval):
    # 计算每个间隔的起始帧索引
    interval_starts = torch.arange(0, clip_length, interval)

    # 初始化锚点帧列表
    frame_index_list = []

    # 在每个间隔内随机选择一个帧索引
    for start in interval_starts:
        # 确保随机索引不超过clip_length
        end = min(start + interval, clip_length)
        anchor_frame = torch.randint(start, end, (1,)).item()

        # 生成重复clip_length次的锚点帧索引列表
        frame_index = [anchor_frame] * clip_length
        frame_index_list.append(frame_index)

    return frame_index_list

class SparseCausalAttention(CrossAttention):
    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        clip_length: int = None,
        SparseCausalAttention_index: list = [-1, 'first']   #list = ['anchor_interval8',0]     #list = [0]  #list = [-1, 'first','dynamic']
    ):
        if (
            self.added_kv_proj_dim is not None
            or encoder_hidden_states is not None
            or attention_mask is not None
        ):
            raise NotImplementedError

        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = self.to_q(hidden_states)
        dim = query.shape[-1]
        query = self.reshape_heads_to_batch_dim(query)

        key = self.to_k(hidden_states)
        value = self.to_v(hidden_states)

        if clip_length is not None:
            key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)
            value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)


            #  *********************** Start of Spatial-temporal attention **********
            frame_index_list = []
            # print(f'SparseCausalAttention_index {str(SparseCausalAttention_index)}')
            if len(SparseCausalAttention_index) > 0:
                for index in SparseCausalAttention_index:
                    if isinstance(index, str):
                        if index == 'first':
                            frame_index = [0] * clip_length
                        if index == 'last':
                            frame_index = [clip_length-1] * clip_length
                        if (index == 'mid') or (index == 'middle'):
                            frame_index = [int(clip_length-1)//2] * clip_length
                        if index == "dynamic":
                            frame_index = generate_dynamic_window_index()
                        if index == "anchor_interval8":
                            frame_index = generate_fix_anchor_frames(clip_length,8)

                    else:
                        assert isinstance(index, int), 'relative index must be int'
                        frame_index = torch.arange(clip_length) + index
                        frame_index = frame_index.clip(0, clip_length-1)

                    if isinstance(frame_index[0], list):
                        frame_index_list = frame_index
                    else:
                        frame_index_list.append(frame_index)
                # print("frame_index_list",frame_index_list)
                # print("key before concat",key.shape)   #[1, frame, 4096, 320]
                key = torch.cat([   key[:, frame_index] for frame_index in frame_index_list
                                    ], dim=2)
                value = torch.cat([ value[:, frame_index] for frame_index in frame_index_list
                                    ], dim=2)

            #  *********************** End of Spatial-temporal attention **********
            key = rearrange(key, "b f d c -> (b f) d c", f=clip_length)
            value = rearrange(value, "b f d c -> (b f) d c", f=clip_length)
        
        
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)
        
        
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
        else:
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(
                    query, key, value, hidden_states.shape[1], dim, attention_mask
                )

        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)
        return hidden_states



class FullyFrameAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias=False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
    ):
        super().__init__()
        inner_dim = dim_head * heads
        cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax

        self.scale = dim_head**-0.5

        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads
        self._slice_size = heads
        # self._slice_size = None
        self._use_memory_efficient_attention_xformers = False
        self.added_kv_proj_dim = added_kv_proj_dim

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
        else:
            self.group_norm = None

        self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
        self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
        self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(inner_dim, query_dim))
        self.to_out.append(nn.Dropout(dropout))

        self.q = None
        self.inject_q = None
        self.k = None
        self.inject_k = None

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def set_attention_slice(self, slice_size):
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        self._slice_size = slice_size
    
    def _attention(self, query, key, value, attention_mask=None):
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        attention_scores = torch.baddbmm(
            torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
            query,
            key.transpose(-1, -2),
            beta=0,
            alpha=self.scale,
        )
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)

        # cast back to the original dtype
        attention_probs = attention_probs.to(value.dtype)

        # compute attention output
        hidden_states = torch.bmm(attention_probs, value)

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):

        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]

            if self.upcast_attention:
                query_slice = query_slice.float()
                key_slice = key_slice.float()

            attn_slice = torch.baddbmm(
                torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
                query_slice,
                key_slice.transpose(-1, -2),
                beta=0,
                alpha=self.scale,
            )

            if attention_mask is not None:
                attn_slice = attn_slice + attention_mask[start_idx:end_idx]

            if self.upcast_softmax:
                attn_slice = attn_slice.float()

            attn_slice = attn_slice.softmax(dim=-1)

            # cast back to the original dtype
            attn_slice = attn_slice.to(value.dtype)
            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)

        return hidden_states

    def reshape_heads_to_batch_dim3(self, tensor):
        batch_size1, batch_size2, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size1, batch_size2, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 3, 1, 2, 4)
        return tensor
    
    def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
        # TODO attention_mask
        query = query.contiguous()
        key = key.contiguous()
        value = value.contiguous()
        hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, clip_length=None, inter_frame=False,**kwargs):
        batch_size, sequence_length, _ = hidden_states.shape

        encoder_hidden_states = encoder_hidden_states

        # h = w = int(math.sqrt(sequence_length))
        h = kwargs['height']
        w = kwargs['width']
        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)


        query = self.to_q(hidden_states)  # (bf) x d(hw) x c

        self.q = query
        if self.inject_q is not None:
            query = self.inject_q
        dim = query.shape[-1]
        query_old = query.clone()
        dim = query.shape[-1]

        # All frames
        query = rearrange(query, "(b f) d c -> b (f d) c", f=clip_length)
        
        query = self.reshape_heads_to_batch_dim(query)

        if self.added_kv_proj_dim is not None:
            raise NotImplementedError

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = self.to_k(encoder_hidden_states)
        self.k = key
        if self.inject_k is not None:
            key = self.inject_k
        key_old = key.clone()
        value = self.to_v(encoder_hidden_states)

        if inter_frame:
            key = rearrange(key, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]]
            value = rearrange(value, "(b f) d c -> b f d c", f=clip_length)[:, [0, -1]]
            key = rearrange(key, "b f d c -> b (f d) c",)
            value = rearrange(value, "b f d c -> b (f d) c")
        else:
            # All frames
            key = rearrange(key, "(b f) d c -> b (f d) c", f=clip_length)
            value = rearrange(value, "(b f) d c -> b (f d) c", f=clip_length)

        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)

        # attention, what we cannot get enough of
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
        else:
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
        
        
        if [h,w] in kwargs['flatten_res']:

            hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=clip_length)
            if self.group_norm is not None:
                hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

            if kwargs["old_qk"] == 1:
                query = query_old
                key = key_old
            else:
                query = hidden_states
                key = hidden_states
            value = hidden_states

            traj = kwargs["traj"]
            traj = rearrange(traj, '(f n) l d -> f n l d', f=clip_length, n=sequence_length)
            mask = rearrange(kwargs["mask"], '(f n) l -> f n l', f=clip_length, n=sequence_length)
            mask = torch.cat([mask[:, :, 0].unsqueeze(-1), mask[:, :, -clip_length+1:]], dim=-1)

            # print('traj',traj.shape)
            # print('mask',mask.shape)

            traj_key_sequence_inds = torch.cat([traj[:, :, 0, :].unsqueeze(-2), traj[:, :, -clip_length+1:, :]], dim=-2)
            t_inds = traj_key_sequence_inds[:, :, :, 0]
            x_inds = traj_key_sequence_inds[:, :, :, 1]
            y_inds = traj_key_sequence_inds[:, :, :, 2]

            query_tempo = query.unsqueeze(-2)
            _key = rearrange(key, '(b f) (h w) d -> b f h w d', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
            _value = rearrange(value, '(b f) (h w) d -> b f h w d', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
            key_tempo = _key[:, t_inds, x_inds, y_inds]
            value_tempo = _value[:, t_inds, x_inds, y_inds]
            key_tempo = rearrange(key_tempo, 'b f n l d -> (b f) n l d')
            value_tempo = rearrange(value_tempo, 'b f n l d -> (b f) n l d')

            mask = rearrange(torch.stack([mask, mask]),  'b f n l -> (b f) n l')
            mask = mask[:,None].repeat(1, self.heads, 1, 1).unsqueeze(-2)
            attn_bias = torch.zeros_like(mask, dtype=key_tempo.dtype) # regular zeros_like
            attn_bias[~mask] = -torch.inf

            # print('attn_bias',attn_bias.shape)
            # print('query_tempo',query_tempo.shape)
            # print('key_tempo',key_tempo.shape)

            # flow attention
            query_tempo = self.reshape_heads_to_batch_dim3(query_tempo)
            key_tempo = self.reshape_heads_to_batch_dim3(key_tempo)
            value_tempo = self.reshape_heads_to_batch_dim3(value_tempo)

            attn_matrix2 = query_tempo @ key_tempo.transpose(-2, -1) / math.sqrt(query_tempo.size(-1)) + attn_bias
            attn_matrix2 = F.softmax(attn_matrix2, dim=-1)
            out = (attn_matrix2@value_tempo).squeeze(-2)

            hidden_states = rearrange(out,'(b f) k (h w) d -> b (f h w) (k d)', b=int(batch_size/clip_length), f=clip_length, h=h, w=w)
        
        
        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)

        # All frames
        hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=clip_length)
        return hidden_states