Spaces:
Running
Running
File size: 10,017 Bytes
fe5c39d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# -*- coding: utf-8 -*-
# @Date : 12/23/2023 4:51 PM
# @Author : stellahong ([email protected])
# @Desc :
from __future__ import annotations
import asyncio
from typing import Any, List, Optional
from pydantic import BaseModel, ConfigDict, Field
from metagpt.llm import LLM
from metagpt.logs import logger
from metagpt.provider.base_llm import BaseLLM
from metagpt.strategy.base import ThoughtNode, ThoughtTree
from metagpt.strategy.tot_schema import MethodSelect, Strategy, ThoughtSolverConfig
from metagpt.utils.common import CodeParser
OUTPUT_FORMAT = """
Each output should be strictly a list of nodes, in json format, like this:
```json
[
{
"node_id": str = "unique identifier for a solution, can be an ordinal",
"node_state_instruction": "specified sample of solution",
},
...
]
```
"""
class ThoughtSolverBase(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
thought_tree: Optional[ThoughtTree] = Field(default=None)
llm: BaseLLM = Field(default_factory=LLM, exclude=True)
config: ThoughtSolverConfig = Field(default_factory=ThoughtSolverConfig)
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self.llm.use_system_prompt = False
async def solve(self, init_prompt):
"""
Solve method for subclasses to implement.
"""
raise NotImplementedError("Subclasses must implement the solve method")
async def generate_thoughts(self, current_state="", current_node=None) -> List[ThoughtNode]:
"""
Generate children thoughts based on the current state.
Args:
current_state (str): The current state for which thoughts are generated.
current_node (ThoughtNode): The current node in the thought tree.
Returns:
List[ThoughtNode]: List of nodes representing the generated thoughts.
"""
state_prompt = self.config.parser.propose(
current_state=current_state, **{"n_generate_sample": self.config.n_generate_sample}
)
rsp = await self.llm.aask(msg=state_prompt + "\n" + OUTPUT_FORMAT)
thoughts = CodeParser.parse_code(block="", text=rsp)
thoughts = eval(thoughts)
# fixme 避免不跟随,生成过多nodes
# valid_thoughts = [_node for idx, _node in enumerate(thoughts) if idx < self.n_generate_sample]
return self.thought_tree.update_node(thoughts, current_node=current_node)
async def evaluate_node(self, node, parent_value) -> None:
"""
Evaluate a node and update its status and value.
Args:
node (ThoughtNode): The node to be evaluated.
parent_value (float): The parent node's value.
Returns:
None
"""
eval_prompt = self.config.parser.value(input=node.name, **{"node_id": node.id})
evaluation = await self.llm.aask(msg=eval_prompt)
value = self.config.evaluator(evaluation, **{"node_id": node.id})
status = self.config.evaluator.status_verify(value)
node.update_valid_status(status=status)
# 累计分数
node.update_value(parent_value + value)
def select_nodes(self, thought_nodes: List[ThoughtNode]) -> List[ThoughtNode]:
"""
Select nodes based on the configured selection method.
Args:
thought_nodes (List[ThoughtNode]): List of nodes to be selected.
Returns:
List[ThoughtNode]: List of selected nodes.
"""
# nodes to be selected
nodes = []
if self.config.method_select == MethodSelect.SAMPLE:
raise NotImplementedError
elif self.config.method_select == MethodSelect.GREEDY:
nodes = sorted(thought_nodes, key=lambda x: x.value, reverse=True)[: self.config.n_select_sample]
for node in thought_nodes:
if node not in nodes:
node.parent = None # 从树中删除节点
return nodes
def update_solution(self):
"""
Select the result with the highest score.
Returns:
- List[ThoughtNode]: List of nodes representing the best solution.
- List[str]: List of node names forming the best solution path.
"""
best_node = max(self.thought_tree.all_nodes, key=lambda x: x.value, default=None)
best_solution_path = self.thought_tree.parse_node_path(best_node)
return [best_node], best_solution_path
class BFSSolver(ThoughtSolverBase):
async def solve(self, init_prompt=""):
"""
Solve the problem using Breadth-First Search (BFS) strategy.
Args:
init_prompt (str): The initial prompt for the solver.
Returns:
List[str]: The best solution path obtained through BFS.
"""
root = ThoughtNode(init_prompt)
self.thought_tree = ThoughtTree(root)
current_nodes = [root]
for step in range(self.config.max_steps):
solutions = await self._bfs_build(current_nodes)
selected_nodes = self.select_nodes(solutions)
current_nodes = selected_nodes
self.thought_tree.show()
best_solution, best_solution_path = self.update_solution()
logger.info(f"best solution is: {best_solution_path}")
return best_solution_path
async def _bfs_build(self, current_nodes):
"""
Build the thought tree using Breadth-First Search (BFS) strategy.
Args:
current_nodes (List[ThoughtNode]): Current nodes to expand.
Returns:
List[ThoughtNode]: The solutions obtained after expanding the current nodes.
"""
tasks = []
for node in current_nodes:
current_state = self.config.parser(node.name)
current_value = node.value
tasks.append(self.generate_and_evaluate_nodes(current_state, current_value, node))
thought_nodes_list = await asyncio.gather(*tasks)
solutions = [child_node for thought_nodes in thought_nodes_list for child_node in thought_nodes]
return solutions
async def generate_and_evaluate_nodes(self, current_state, current_value, node):
thought_nodes = await self.generate_thoughts(current_state, current_node=node)
await asyncio.gather(
*(self.evaluate_node(child_node, parent_value=current_value) for child_node in thought_nodes)
)
return thought_nodes
class DFSSolver(ThoughtSolverBase):
async def _dfs(self, root_node):
"""
Perform Depth-First Search (DFS) on the thought tree.
Args:
root_node (ThoughtNode): The root node of the thought tree.
Returns:
List[str]: The solution path obtained through DFS.
"""
impossible_state_cnt = 0
node = root_node
for step in range(self.max_steps):
current_state = self.config.parser(node.name)
current_value = node.value
thought_nodes = await self.generate_thoughts(current_state, current_node=node)
await self.evaluate_node(thought_nodes[0], parent_value=current_value)
if thought_nodes[0].valid_status is False:
impossible_state_cnt += 1
if impossible_state_cnt >= 2:
logger.info("impossible state reached, break")
break
node = thought_nodes[0]
_solution_path = self.thought_tree.parse_node_path(node)
self.thought_tree.show()
return _solution_path
async def solve(self, init_prompt="", root=ThoughtNode("")):
"""
Solve the problem using Depth-First Search (DFS) strategy.
Args:
init_prompt (str): The initial prompt for the solver.
Returns:
List[str]: The best solution path obtained through DFS.
"""
root = ThoughtNode(init_prompt)
self.thought_tree = ThoughtTree(root)
for n in range(self.config.n_solution_sample):
# fixme: 需要产生回退,当前节点不可用时回退到父节点,产生新的节点继续探索
await self._dfs(root)
best_solution, best_solution_path = self.update_solution()
logger.info(f"best solution is: {best_solution_path}")
return best_solution_path
class MCTSSolver(ThoughtSolverBase):
async def solve(self, init_prompt=""):
raise NotImplementedError
class TreeofThought(BaseModel):
config: ThoughtSolverConfig = Field(default_factory=ThoughtSolverConfig)
solver: ThoughtSolverBase = Field(default_factory=ThoughtSolverBase)
strategy: Strategy = Field(default=Strategy.BFS)
class Config:
arbitrary_types_allowed = True
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
self._initialize_solver(self.strategy)
def _initialize_solver(self, strategy):
"""
Initialize the solver based on the chosen strategy.
Args:
strategy (Strategy): The strategy to use for solving.
Returns:
ThoughtSolverBase: An instance of the appropriate solver.
"""
if strategy == Strategy.BFS:
self.solver = BFSSolver(config=self.config)
elif strategy == Strategy.DFS:
self.solver = DFSSolver(config=self.config)
elif strategy == Strategy.MCTS:
self.solver = MCTSSolver(config=self.config)
else:
raise NotImplementedError(f"Invalid strategy: {strategy}, only support BFS/DFS/MCTS currently!")
async def solve(self, init_prompt=""):
"""
Solve the problem using the specified strategy.
Args:
init_prompt (str): The initial prompt for the solver.
strategy (str): The strategy to use for solving.
Returns:
Any: The solution obtained using the selected strategy.
"""
await self.solver.solve(init_prompt)
|