|
import logging |
|
import math |
|
import fvcore.nn.weight_init as weight_init |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from detectron2.layers import CNNBlockBase, Conv2d, get_norm |
|
from detectron2.modeling.backbone.fpn import _assert_strides_are_log2_contiguous |
|
from fairscale.nn.checkpoint import checkpoint_wrapper |
|
from timm.models.layers import DropPath, Mlp, trunc_normal_ |
|
from .backbone import Backbone |
|
from .utils import ( |
|
PatchEmbed, |
|
add_decomposed_rel_pos, |
|
get_abs_pos, |
|
window_partition, |
|
window_unpartition, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
__all__ = ["ViT"] |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
input_size=None, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (int or None): Input resolution for calculating the relative positional |
|
parameter size. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) |
|
|
|
if not rel_pos_zero_init: |
|
trunc_normal_(self.rel_pos_h, std=0.02) |
|
trunc_normal_(self.rel_pos_w, std=0.02) |
|
|
|
def forward(self, x): |
|
B, H, W, _ = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
class LayerNorm(nn.Module): |
|
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.eps = eps |
|
self.data_format = data_format |
|
if self.data_format not in ["channels_last", "channels_first"]: |
|
raise NotImplementedError |
|
self.normalized_shape = (normalized_shape, ) |
|
|
|
def forward(self, x): |
|
if self.data_format == "channels_last": |
|
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) |
|
elif self.data_format == "channels_first": |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
class ResBottleneckBlock(CNNBlockBase): |
|
""" |
|
The standard bottleneck residual block without the last activation layer. |
|
It contains 3 conv layers with kernels 1x1, 3x3, 1x1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
bottleneck_channels, |
|
norm="LN", |
|
act_layer=nn.GELU, |
|
conv_kernels=3, |
|
conv_paddings=1, |
|
): |
|
""" |
|
Args: |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
bottleneck_channels (int): number of output channels for the 3x3 |
|
"bottleneck" conv layers. |
|
norm (str or callable): normalization for all conv layers. |
|
See :func:`layers.get_norm` for supported format. |
|
act_layer (callable): activation for all conv layers. |
|
""" |
|
super().__init__(in_channels, out_channels, 1) |
|
|
|
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) |
|
self.norm1 = get_norm(norm, bottleneck_channels) |
|
self.act1 = act_layer() |
|
|
|
self.conv2 = Conv2d( |
|
bottleneck_channels, |
|
bottleneck_channels, |
|
conv_kernels, |
|
padding=conv_paddings, |
|
bias=False, |
|
) |
|
self.norm2 = get_norm(norm, bottleneck_channels) |
|
self.act2 = act_layer() |
|
|
|
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) |
|
self.norm3 = get_norm(norm, out_channels) |
|
|
|
for layer in [self.conv1, self.conv2, self.conv3]: |
|
weight_init.c2_msra_fill(layer) |
|
for layer in [self.norm1, self.norm2]: |
|
layer.weight.data.fill_(1.0) |
|
layer.bias.data.zero_() |
|
|
|
self.norm3.weight.data.zero_() |
|
self.norm3.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
out = x |
|
for layer in self.children(): |
|
out = layer(out) |
|
|
|
out = x + out |
|
return out |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer blocks with support of window attention and residual propagation blocks""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
window_size=0, |
|
use_cc_attn = False, |
|
use_residual_block=False, |
|
use_convnext_block=False, |
|
input_size=None, |
|
res_conv_kernel_size=3, |
|
res_conv_padding=1, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. If it equals 0, then not |
|
use window attention. |
|
use_residual_block (bool): If True, use a residual block after the MLP block. |
|
input_size (int or None): Input resolution for calculating the relative positional |
|
parameter size. |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size if window_size == 0 else (window_size, window_size), |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) |
|
|
|
self.window_size = window_size |
|
|
|
self.use_residual_block = use_residual_block |
|
if use_residual_block: |
|
|
|
self.residual = ResBottleneckBlock( |
|
in_channels=dim, |
|
out_channels=dim, |
|
bottleneck_channels=dim // 2, |
|
norm="LN", |
|
act_layer=act_layer, |
|
conv_kernels=res_conv_kernel_size, |
|
conv_paddings=res_conv_padding, |
|
) |
|
self.use_convnext_block = use_convnext_block |
|
if use_convnext_block: |
|
self.convnext = ConvNextBlock(dim = dim) |
|
|
|
if use_cc_attn: |
|
self.attn = CrissCrossAttention(dim) |
|
|
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
if self.window_size > 0: |
|
H, W = x.shape[1], x.shape[2] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
x = self.attn(x) |
|
|
|
|
|
if self.window_size > 0: |
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) |
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
if self.use_residual_block: |
|
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) |
|
if self.use_convnext_block: |
|
x = self.convnext(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) |
|
|
|
return x |
|
|
|
|
|
class ViT(Backbone): |
|
""" |
|
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. |
|
"Exploring Plain Vision Transformer Backbones for Object Detection", |
|
https://arxiv.org/abs/2203.16527 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=1024, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
use_abs_pos=True, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
window_size=0, |
|
window_block_indexes=(), |
|
residual_block_indexes=(), |
|
use_act_checkpoint=False, |
|
pretrain_img_size=224, |
|
pretrain_use_cls_token=True, |
|
out_feature="last_feat", |
|
res_conv_kernel_size=3, |
|
res_conv_padding=1, |
|
): |
|
""" |
|
Args: |
|
img_size (int): Input image size. |
|
patch_size (int): Patch size. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
depth (int): Depth of ViT. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path_rate (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_abs_pos (bool): If True, use absolute positional embeddings. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. |
|
window_block_indexes (list): Indexes for blocks using window attention. |
|
residual_block_indexes (list): Indexes for blocks using conv propagation. |
|
use_act_checkpoint (bool): If True, use activation checkpointing. |
|
pretrain_img_size (int): input image size for pretraining models. |
|
pretrain_use_cls_token (bool): If True, pretrainig models use class token. |
|
out_feature (str): name of the feature from the last block. |
|
""" |
|
super().__init__() |
|
self.pretrain_use_cls_token = pretrain_use_cls_token |
|
|
|
self.patch_embed = PatchEmbed( |
|
kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size), |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
if use_abs_pos: |
|
|
|
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) |
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
block = Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
window_size=window_size if i in window_block_indexes else 0, |
|
use_residual_block=i in residual_block_indexes, |
|
input_size=(img_size // patch_size, img_size // patch_size), |
|
res_conv_kernel_size=res_conv_kernel_size, |
|
res_conv_padding=res_conv_padding, |
|
) |
|
if use_act_checkpoint: |
|
block = checkpoint_wrapper(block) |
|
self.blocks.append(block) |
|
|
|
self._out_feature_channels = {out_feature: embed_dim} |
|
self._out_feature_strides = {out_feature: patch_size} |
|
self._out_features = [out_feature] |
|
|
|
if self.pos_embed is not None: |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self.patch_embed(x) |
|
if self.pos_embed is not None: |
|
x = x + get_abs_pos( |
|
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) |
|
) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
outputs = {self._out_features[0]: x.permute(0, 3, 1, 2)} |
|
|
|
return outputs['last_feat'] |