File size: 17,699 Bytes
8b4c6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import os
import torch
import numpy as np
import cv2
from torch.utils.data import Dataset
from torchvision import transforms
import random
import imgaug.augmenters as iaa
import numbers
import math
def random_interp():
return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])
class RandomAffine(object):
"""
Random affine translation
"""
def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
self.flip = flip
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
random.uniform(scale_ranges[0], scale_ranges[1]))
else:
scale = (1.0, 1.0)
if shears is not None:
shear = random.uniform(shears[0], shears[1])
else:
shear = 0.0
if flip is not None:
flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1
return angle, translations, scale, shear, flip
def __call__(self, sample):
fg, alpha = sample['fg'], sample['alpha']
rows, cols, ch = fg.shape
if np.maximum(rows, cols) < 1024:
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
else:
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
M = self._get_inverse_affine_matrix(center, *params)
M = np.array(M).reshape((2, 3))
fg = cv2.warpAffine(fg, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
alpha = cv2.warpAffine(alpha, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
sample['fg'], sample['alpha'] = fg, alpha
return sample
@ staticmethod
def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
# Helper method to compute inverse matrix for affine transformation
# As it is explained in PIL.Image.rotate
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# It is different from the original function in torchvision
# The order are changed to flip -> scale -> rotation -> shear
# x and y have different scale factors
# RSS(shear, a, scale, f) = [ cos(a + shear)*scale_x*f -sin(a + shear)*scale_y 0]
# [ sin(a)*scale_x*f cos(a)*scale_y 0]
# [ 0 0 1]
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
angle = math.radians(angle)
shear = math.radians(shear)
scale_x = 1.0 / scale[0] * flip[0]
scale_y = 1.0 / scale[1] * flip[1]
# Inverted rotation matrix with scale and shear
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
matrix = [
math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
-math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
]
matrix = [m / d for m in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += center[0]
matrix[5] += center[1]
return matrix
class GenTrimap(object):
def __init__(self):
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]
def __call__(self, sample):
alpha = sample['alpha']
h, w = alpha.shape
max_kernel_size = max(30, int((min(h,w) / 2048) * 30))
### generate trimap
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
trimap = np.ones_like(alpha) * 128
trimap[fg_mask == 1] = 255
trimap[bg_mask == 1] = 0
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
sample['trimap'] = trimap
return sample
class RandomCrop(object):
"""
Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'
:param output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, output_size=(1024, 1024)):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
self.margin = output_size[0] // 2
def __call__(self, sample):
fg, alpha, trimap, name = sample['fg'], sample['alpha'], sample['trimap'], sample['image_name']
bg = sample['bg']
h, w = trimap.shape
bg = cv2.resize(bg, (w, h), interpolation=random_interp())
if w < self.output_size[0]+1 or h < self.output_size[1]+1:
ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
# self.logger.warning("Size of {} is {}.".format(name, (h, w)))
while h < self.output_size[0]+1 or w < self.output_size[1]+1:
fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
interpolation=random_interp())
trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
h, w = trimap.shape
small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
self.margin//4:(w-self.margin)//4] == 128)))
unknown_num = len(unknown_list)
if len(unknown_list) < 10:
left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
else:
idx = np.random.randint(unknown_num)
left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)
fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
if len(np.where(trimap==128)[0]) == 0:
fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=random_interp())
alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=random_interp())
trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=random_interp())
sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'bg': bg_crop})
return sample
class Composite_Seg(object):
def __call__(self, sample):
fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
fg[fg < 0 ] = 0
fg[fg > 255] = 255
image = fg
sample['image'] = image
return sample
class ToTensor(object):
"""
Convert ndarrays in sample to Tensors with normalization.
"""
def __init__(self, phase="test", real_world_aug = False):
# self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
# self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
self.mean = torch.tensor([0.0, 0.0, 0.0]).view(3,1,1)
self.std = torch.tensor([1.0, 1.0, 1.0]).view(3,1,1)
self.phase = phase
if real_world_aug:
self.RWA = iaa.SomeOf((1, None), [
iaa.LinearContrast((0.6, 1.4)),
iaa.JpegCompression(compression=(0, 60)),
iaa.GaussianBlur(sigma=(0.0, 3.0)),
iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))
], random_order=True)
else:
self.RWA = None
def get_box_from_alpha(self, alpha_final):
bi_mask = np.zeros_like(alpha_final)
bi_mask[alpha_final>0.5] = 1
#bi_mask[alpha_final<=0.5] = 0
fg_set = np.where(bi_mask != 0)
if len(fg_set[1]) == 0 or len(fg_set[0]) == 0:
x_min = random.randint(1, 511)
x_max = random.randint(1, 511) + x_min
y_min = random.randint(1, 511)
y_max = random.randint(1, 511) + y_min
else:
x_min = np.min(fg_set[1])
x_max = np.max(fg_set[1])
y_min = np.min(fg_set[0])
y_max = np.max(fg_set[0])
bbox = np.array([x_min, y_min, x_max, y_max])
#cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0,255,0), 2)
#cv2.imwrite('../outputs/test.jpg', image)
#cv2.imwrite('../outputs/test_gt.jpg', alpha_single)
return bbox
def __call__(self, sample):
# convert GBR images to RGB
image, alpha, trimap = sample['image'][:,:,::-1], sample['alpha'], sample['trimap']
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
bbox = self.get_box_from_alpha(alpha)
if self.phase == 'train' and self.RWA is not None and np.random.rand() < 0.5:
image[image > 255] = 255
image[image < 0] = 0
image = np.round(image).astype(np.uint8)
image = np.expand_dims(image, axis=0)
image = self.RWA(images=image)
image = image[0, ...]
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1)).astype(np.float32)
alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
trimap[trimap < 85] = 0
trimap[trimap >= 170] = 2
trimap[trimap >= 85] = 1
#image = cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255,0,0), 3)
#cv2.imwrite(os.path.join('outputs', 'img_bbox.png'), image.astype('uint8'))
# normalize image
image /= 255.
if self.phase == "train":
# convert GBR images to RGB
fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['fg'] = torch.from_numpy(fg).sub_(self.mean).div_(self.std)
bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['bg'] = torch.from_numpy(bg).sub_(self.mean).div_(self.std)
del sample['image_name']
sample['boxes'] = torch.from_numpy(bbox).to(torch.float)[None,...]
sample['image'], sample['alpha'], sample['trimap'] = \
torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
sample['image'] = sample['image'].sub_(self.mean).div_(self.std)
sample['trimap'] = sample['trimap'][None,...].float()
return sample
class RefMatteData(Dataset):
def __init__(
self,
data_root_path,
num_ratio = 0.34,
):
self.data_root_path = data_root_path
self.num_ratio = num_ratio
self.rim_img = [os.path.join(data_root_path, name) for name in sorted(os.listdir(data_root_path))]
self.rim_pha = [os.path.join(data_root_path.replace('img', 'mask'), name) for name in sorted(os.listdir(data_root_path.replace('img', 'mask')))]
self.rim_num = len(self.rim_pha)
self.transform_spd = transforms.Compose([
RandomAffine(degrees=30, scale=[0.8, 1.5], shear=10, flip=0.5),
GenTrimap(),
RandomCrop((1024, 1024)),
Composite_Seg(),
ToTensor(phase="train", real_world_aug=False)
])
def __getitem__(self, idx):
if self.num_ratio is not None:
if self.num_ratio < 1.0 or idx >= self.rim_num:
idx = np.random.randint(0, self.rim_num)
alpha = cv2.imread(self.rim_pha[idx % self.rim_num], 0).astype(np.float32)/255
alpha_img_name = self.rim_pha[idx % self.rim_num].split('/')[-1]
fg_img_name = alpha_img_name[:-6] + '.jpg'
fg = cv2.imread(os.path.join(self.data_root_path, fg_img_name))
if np.random.rand() < 0.25:
fg = cv2.resize(fg, (1280, 1280), interpolation=random_interp())
alpha = cv2.resize(alpha, (1280, 1280), interpolation=random_interp())
image_name = alpha_img_name # os.path.split(self.rim_img[idx % self.rim_num])[-1]
sample = {'fg': fg, 'alpha': alpha, 'bg': fg, 'image_name': image_name}
sample = self.transform_spd(sample)
converted_sample = {
'image': sample['image'],
'trimap': sample['trimap'] / 2.0,
'alpha': sample['alpha'],
'bbox': sample['boxes'],
'dataset_name': 'RefMatte',
'multi_fg': False,
}
return converted_sample
def __len__(self):
if self.num_ratio is not None:
return int(self.rim_num * self.num_ratio) # 112506 * 0.34 = 38252 (COCONut_num-38251 + 1)
else:
return self.rim_num # 112506
if __name__ == '__main__':
dataset = RefMatteData(
data_root_path = '/data/my_path_b/public_data/data/matting/RefMatte/RefMatte/train/img',
num_ratio=0.34,
)
data = dataset[0]
'''
fg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
bg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
trimap torch.Size([1, 1024, 1024]) 0.0 or 1.0 or 2.0
image torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
boxes torch.Size([1, 4]) tensor(72.) tensor(676.) 0.0~1024.0
COCONut:
image torch.Size([3, 1024, 1024]) tensor(0.0006) tensor(0.9991)
trimap torch.Size([1, 1024, 1024]) 0.0 or 0.5 or 1.0
alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
bbox torch.Size([1, 4]) tensor(0.) tensor(590.)
dataset_name: 'COCONut'
'''
for key, val in data.items():
if isinstance(val, torch.Tensor):
print(key, val.shape, torch.min(val), torch.max(val))
else:
print(key, val.shape) |