Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
de9c8c4
1
Parent(s):
776c8b2
Add `no_cuda` argument to not use GPU
Browse files- src/evaluate.py +6 -9
- src/model.py +7 -1
- src/predict.py +13 -8
- src/preprocess.py +4 -1
- src/train.py +1 -1
src/evaluate.py
CHANGED
@@ -143,12 +143,12 @@ def main():
|
|
143 |
dataset_args.data_dir, dataset_args.processed_file)
|
144 |
|
145 |
if not os.path.exists(final_path):
|
146 |
-
logger.error('ERROR: Processed database not found
|
147 |
-
f'Run `python src/preprocess.py --update_database --
|
148 |
return
|
149 |
|
150 |
model, tokenizer = get_model_tokenizer(
|
151 |
-
evaluation_args.model_path, evaluation_args.cache_dir)
|
152 |
|
153 |
with open(final_path) as fp:
|
154 |
final_data = json.load(fp)
|
@@ -178,14 +178,8 @@ def main():
|
|
178 |
try:
|
179 |
with tqdm(video_ids) as progress:
|
180 |
for video_index, video_id in enumerate(progress):
|
181 |
-
|
182 |
progress.set_description(f'Processing {video_id}')
|
183 |
|
184 |
-
sponsor_segments = final_data.get(video_id)
|
185 |
-
if not sponsor_segments:
|
186 |
-
logger.warning('No labels found for', video_id)
|
187 |
-
continue
|
188 |
-
|
189 |
words = get_words(video_id)
|
190 |
if not words:
|
191 |
continue
|
@@ -194,6 +188,8 @@ def main():
|
|
194 |
predictions = predict(video_id, model, tokenizer,
|
195 |
segmentation_args, words, classifier_args)
|
196 |
|
|
|
|
|
197 |
if sponsor_segments:
|
198 |
labelled_words = add_labels_to_words(
|
199 |
words, sponsor_segments)
|
@@ -229,6 +225,7 @@ def main():
|
|
229 |
words, seg['start'], seg['end'])
|
230 |
|
231 |
else:
|
|
|
232 |
# Not in database (all segments missed)
|
233 |
missed_segments = predictions
|
234 |
incorrect_segments = []
|
|
|
143 |
dataset_args.data_dir, dataset_args.processed_file)
|
144 |
|
145 |
if not os.path.exists(final_path):
|
146 |
+
logger.error('ERROR: Processed database not found.\n'
|
147 |
+
f'Run `python src/preprocess.py --update_database --do_create` to generate "{final_path}".')
|
148 |
return
|
149 |
|
150 |
model, tokenizer = get_model_tokenizer(
|
151 |
+
evaluation_args.model_path, evaluation_args.cache_dir, evaluation_args.no_cuda)
|
152 |
|
153 |
with open(final_path) as fp:
|
154 |
final_data = json.load(fp)
|
|
|
178 |
try:
|
179 |
with tqdm(video_ids) as progress:
|
180 |
for video_index, video_id in enumerate(progress):
|
|
|
181 |
progress.set_description(f'Processing {video_id}')
|
182 |
|
|
|
|
|
|
|
|
|
|
|
183 |
words = get_words(video_id)
|
184 |
if not words:
|
185 |
continue
|
|
|
188 |
predictions = predict(video_id, model, tokenizer,
|
189 |
segmentation_args, words, classifier_args)
|
190 |
|
191 |
+
# Get labels
|
192 |
+
sponsor_segments = final_data.get(video_id)
|
193 |
if sponsor_segments:
|
194 |
labelled_words = add_labels_to_words(
|
195 |
words, sponsor_segments)
|
|
|
225 |
words, seg['start'], seg['end'])
|
226 |
|
227 |
else:
|
228 |
+
# logger.warning(f'No labels found for {video_id}')
|
229 |
# Not in database (all segments missed)
|
230 |
missed_segments = predictions
|
231 |
incorrect_segments = []
|
src/model.py
CHANGED
@@ -7,6 +7,7 @@ import pickle
|
|
7 |
import os
|
8 |
from dataclasses import dataclass, field
|
9 |
from typing import Optional
|
|
|
10 |
|
11 |
|
12 |
@dataclass
|
@@ -22,6 +23,9 @@ class ModelArguments:
|
|
22 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
23 |
}
|
24 |
)
|
|
|
|
|
|
|
25 |
# config_name: Optional[str] = field( # TODO remove?
|
26 |
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
|
27 |
# )
|
@@ -93,13 +97,15 @@ def get_classifier_vectorizer(classifier_args):
|
|
93 |
|
94 |
|
95 |
@lru_cache(maxsize=None)
|
96 |
-
def get_model_tokenizer(model_name_or_path, cache_dir=None):
|
97 |
if model_name_or_path is None:
|
98 |
raise ModelLoadError('Invalid model_name_or_path.')
|
99 |
|
100 |
# Load pretrained model and tokenizer
|
101 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
102 |
model_name_or_path, cache_dir=cache_dir)
|
|
|
|
|
103 |
|
104 |
tokenizer = AutoTokenizer.from_pretrained(
|
105 |
model_name_or_path, max_length=model.config.d_model, cache_dir=cache_dir)
|
|
|
7 |
import os
|
8 |
from dataclasses import dataclass, field
|
9 |
from typing import Optional
|
10 |
+
import torch
|
11 |
|
12 |
|
13 |
@dataclass
|
|
|
23 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
24 |
}
|
25 |
)
|
26 |
+
no_cuda: bool = field(default=False, metadata={
|
27 |
+
'help': 'Do not use CUDA even when it is available'})
|
28 |
+
|
29 |
# config_name: Optional[str] = field( # TODO remove?
|
30 |
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
|
31 |
# )
|
|
|
97 |
|
98 |
|
99 |
@lru_cache(maxsize=None)
|
100 |
+
def get_model_tokenizer(model_name_or_path, cache_dir=None, no_cuda=False):
|
101 |
if model_name_or_path is None:
|
102 |
raise ModelLoadError('Invalid model_name_or_path.')
|
103 |
|
104 |
# Load pretrained model and tokenizer
|
105 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
106 |
model_name_or_path, cache_dir=cache_dir)
|
107 |
+
if not no_cuda:
|
108 |
+
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
109 |
|
110 |
tokenizer = AutoTokenizer.from_pretrained(
|
111 |
model_name_or_path, max_length=model.config.d_model, cache_dir=cache_dir)
|
src/predict.py
CHANGED
@@ -25,6 +25,7 @@ import preprocess
|
|
25 |
from errors import PredictionException, TranscriptError, ModelLoadError, ClassifierLoadError
|
26 |
from model import ModelArguments, get_classifier_vectorizer, get_model_tokenizer
|
27 |
|
|
|
28 |
|
29 |
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
|
30 |
INNERTUBE_KEY = base64.b64decode(
|
@@ -114,6 +115,8 @@ class InferenceArguments:
|
|
114 |
output_as_json: bool = field(default=False, metadata={
|
115 |
'help': 'Output evaluations as JSON'})
|
116 |
|
|
|
|
|
117 |
def __post_init__(self):
|
118 |
# Try to load model from latest checkpoint
|
119 |
if self.model_path is None:
|
@@ -137,8 +140,8 @@ class InferenceArguments:
|
|
137 |
|
138 |
channel_video_ids = list(itertools.islice(get_all_channel_vids(
|
139 |
self.channel_id), start, end))
|
140 |
-
|
141 |
-
|
142 |
|
143 |
self.video_ids += channel_video_ids
|
144 |
|
@@ -300,8 +303,9 @@ CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
|
|
300 |
|
301 |
def predict_sponsor_text(text, model, tokenizer):
|
302 |
"""Given a body of text, predict the words which are part of the sponsor"""
|
|
|
303 |
input_ids = tokenizer(
|
304 |
-
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids
|
305 |
|
306 |
max_out_len = round(min(
|
307 |
max(
|
@@ -389,7 +393,7 @@ def segments_to_predictions(segments, model, tokenizer):
|
|
389 |
|
390 |
def main():
|
391 |
# Test on unseen data
|
392 |
-
logging.getLogger().setLevel(logging.DEBUG)
|
393 |
|
394 |
hf_parser = HfArgumentParser((
|
395 |
PredictArguments,
|
@@ -399,11 +403,12 @@ def main():
|
|
399 |
predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
|
400 |
|
401 |
if not predict_args.video_ids:
|
402 |
-
|
|
|
403 |
return
|
404 |
|
405 |
model, tokenizer = get_model_tokenizer(
|
406 |
-
predict_args.model_path, predict_args.cache_dir)
|
407 |
|
408 |
for video_id in predict_args.video_ids:
|
409 |
video_id = video_id.strip()
|
@@ -411,11 +416,11 @@ def main():
|
|
411 |
predictions = predict(video_id, model, tokenizer,
|
412 |
segmentation_args, classifier_args=classifier_args)
|
413 |
except TranscriptError:
|
414 |
-
|
415 |
continue
|
416 |
video_url = f'https://www.youtube.com/watch?v={video_id}'
|
417 |
if not predictions:
|
418 |
-
|
419 |
continue
|
420 |
|
421 |
# TODO use predict_args.output_as_json
|
|
|
25 |
from errors import PredictionException, TranscriptError, ModelLoadError, ClassifierLoadError
|
26 |
from model import ModelArguments, get_classifier_vectorizer, get_model_tokenizer
|
27 |
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
|
30 |
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
|
31 |
INNERTUBE_KEY = base64.b64decode(
|
|
|
115 |
output_as_json: bool = field(default=False, metadata={
|
116 |
'help': 'Output evaluations as JSON'})
|
117 |
|
118 |
+
no_cuda: bool = ModelArguments.__dataclass_fields__['no_cuda']
|
119 |
+
|
120 |
def __post_init__(self):
|
121 |
# Try to load model from latest checkpoint
|
122 |
if self.model_path is None:
|
|
|
140 |
|
141 |
channel_video_ids = list(itertools.islice(get_all_channel_vids(
|
142 |
self.channel_id), start, end))
|
143 |
+
logger.info(
|
144 |
+
f'Found {len(channel_video_ids)} for channel {self.channel_id}')
|
145 |
|
146 |
self.video_ids += channel_video_ids
|
147 |
|
|
|
303 |
|
304 |
def predict_sponsor_text(text, model, tokenizer):
|
305 |
"""Given a body of text, predict the words which are part of the sponsor"""
|
306 |
+
model_device = next(model.parameters()).device
|
307 |
input_ids = tokenizer(
|
308 |
+
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(model_device)
|
309 |
|
310 |
max_out_len = round(min(
|
311 |
max(
|
|
|
393 |
|
394 |
def main():
|
395 |
# Test on unseen data
|
396 |
+
# logging.getLogger().setLevel(logging.DEBUG)
|
397 |
|
398 |
hf_parser = HfArgumentParser((
|
399 |
PredictArguments,
|
|
|
403 |
predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
|
404 |
|
405 |
if not predict_args.video_ids:
|
406 |
+
logger.error(
|
407 |
+
'No video IDs supplied. Use `--video_id`, `--video_ids`, or `--channel_id`.')
|
408 |
return
|
409 |
|
410 |
model, tokenizer = get_model_tokenizer(
|
411 |
+
predict_args.model_path, predict_args.cache_dir, predict_args.no_cuda)
|
412 |
|
413 |
for video_id in predict_args.video_ids:
|
414 |
video_id = video_id.strip()
|
|
|
416 |
predictions = predict(video_id, model, tokenizer,
|
417 |
segmentation_args, classifier_args=classifier_args)
|
418 |
except TranscriptError:
|
419 |
+
logger.warning('No transcript available for', video_id, end='\n\n')
|
420 |
continue
|
421 |
video_url = f'https://www.youtube.com/watch?v={video_id}'
|
422 |
if not predictions:
|
423 |
+
logger.info('No predictions found for', video_url, end='\n\n')
|
424 |
continue
|
425 |
|
426 |
# TODO use predict_args.output_as_json
|
src/preprocess.py
CHANGED
@@ -558,6 +558,8 @@ def main():
|
|
558 |
@lru_cache(maxsize=1)
|
559 |
def read_db():
|
560 |
if not preprocess_args.overwrite and os.path.exists(processed_db_path):
|
|
|
|
|
561 |
with open(processed_db_path) as fp:
|
562 |
return json.load(fp)
|
563 |
print('Processing raw database')
|
@@ -790,7 +792,8 @@ def main():
|
|
790 |
# , max_videos, max_segments
|
791 |
|
792 |
from model import get_model_tokenizer
|
793 |
-
model, tokenizer = get_model_tokenizer(
|
|
|
794 |
|
795 |
# TODO
|
796 |
# count_videos = 0
|
|
|
558 |
@lru_cache(maxsize=1)
|
559 |
def read_db():
|
560 |
if not preprocess_args.overwrite and os.path.exists(processed_db_path):
|
561 |
+
print(
|
562 |
+
'Using cached processed database (use `--overwrite` to avoid this behaviour).')
|
563 |
with open(processed_db_path) as fp:
|
564 |
return json.load(fp)
|
565 |
print('Processing raw database')
|
|
|
792 |
# , max_videos, max_segments
|
793 |
|
794 |
from model import get_model_tokenizer
|
795 |
+
model, tokenizer = get_model_tokenizer(
|
796 |
+
model_args.model_name_or_path, model_args.cache_dir, model_args.no_cuda)
|
797 |
|
798 |
# TODO
|
799 |
# count_videos = 0
|
src/train.py
CHANGED
@@ -297,7 +297,7 @@ def main():
|
|
297 |
|
298 |
from model import get_model_tokenizer
|
299 |
model, tokenizer = get_model_tokenizer(
|
300 |
-
model_args.model_name_or_path, model_args.cache_dir)
|
301 |
# max_tokenizer_length = model.config.d_model
|
302 |
|
303 |
# Preprocessing the datasets.
|
|
|
297 |
|
298 |
from model import get_model_tokenizer
|
299 |
model, tokenizer = get_model_tokenizer(
|
300 |
+
model_args.model_name_or_path, model_args.cache_dir, model_args.no_cuda)
|
301 |
# max_tokenizer_length = model.config.d_model
|
302 |
|
303 |
# Preprocessing the datasets.
|