Spaces:
Running
Running
Joshua Lochner
commited on
Commit
·
de9c8c4
1
Parent(s):
776c8b2
Add `no_cuda` argument to not use GPU
Browse files- src/evaluate.py +6 -9
- src/model.py +7 -1
- src/predict.py +13 -8
- src/preprocess.py +4 -1
- src/train.py +1 -1
src/evaluate.py
CHANGED
|
@@ -143,12 +143,12 @@ def main():
|
|
| 143 |
dataset_args.data_dir, dataset_args.processed_file)
|
| 144 |
|
| 145 |
if not os.path.exists(final_path):
|
| 146 |
-
logger.error('ERROR: Processed database not found
|
| 147 |
-
f'Run `python src/preprocess.py --update_database --
|
| 148 |
return
|
| 149 |
|
| 150 |
model, tokenizer = get_model_tokenizer(
|
| 151 |
-
evaluation_args.model_path, evaluation_args.cache_dir)
|
| 152 |
|
| 153 |
with open(final_path) as fp:
|
| 154 |
final_data = json.load(fp)
|
|
@@ -178,14 +178,8 @@ def main():
|
|
| 178 |
try:
|
| 179 |
with tqdm(video_ids) as progress:
|
| 180 |
for video_index, video_id in enumerate(progress):
|
| 181 |
-
|
| 182 |
progress.set_description(f'Processing {video_id}')
|
| 183 |
|
| 184 |
-
sponsor_segments = final_data.get(video_id)
|
| 185 |
-
if not sponsor_segments:
|
| 186 |
-
logger.warning('No labels found for', video_id)
|
| 187 |
-
continue
|
| 188 |
-
|
| 189 |
words = get_words(video_id)
|
| 190 |
if not words:
|
| 191 |
continue
|
|
@@ -194,6 +188,8 @@ def main():
|
|
| 194 |
predictions = predict(video_id, model, tokenizer,
|
| 195 |
segmentation_args, words, classifier_args)
|
| 196 |
|
|
|
|
|
|
|
| 197 |
if sponsor_segments:
|
| 198 |
labelled_words = add_labels_to_words(
|
| 199 |
words, sponsor_segments)
|
|
@@ -229,6 +225,7 @@ def main():
|
|
| 229 |
words, seg['start'], seg['end'])
|
| 230 |
|
| 231 |
else:
|
|
|
|
| 232 |
# Not in database (all segments missed)
|
| 233 |
missed_segments = predictions
|
| 234 |
incorrect_segments = []
|
|
|
|
| 143 |
dataset_args.data_dir, dataset_args.processed_file)
|
| 144 |
|
| 145 |
if not os.path.exists(final_path):
|
| 146 |
+
logger.error('ERROR: Processed database not found.\n'
|
| 147 |
+
f'Run `python src/preprocess.py --update_database --do_create` to generate "{final_path}".')
|
| 148 |
return
|
| 149 |
|
| 150 |
model, tokenizer = get_model_tokenizer(
|
| 151 |
+
evaluation_args.model_path, evaluation_args.cache_dir, evaluation_args.no_cuda)
|
| 152 |
|
| 153 |
with open(final_path) as fp:
|
| 154 |
final_data = json.load(fp)
|
|
|
|
| 178 |
try:
|
| 179 |
with tqdm(video_ids) as progress:
|
| 180 |
for video_index, video_id in enumerate(progress):
|
|
|
|
| 181 |
progress.set_description(f'Processing {video_id}')
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
words = get_words(video_id)
|
| 184 |
if not words:
|
| 185 |
continue
|
|
|
|
| 188 |
predictions = predict(video_id, model, tokenizer,
|
| 189 |
segmentation_args, words, classifier_args)
|
| 190 |
|
| 191 |
+
# Get labels
|
| 192 |
+
sponsor_segments = final_data.get(video_id)
|
| 193 |
if sponsor_segments:
|
| 194 |
labelled_words = add_labels_to_words(
|
| 195 |
words, sponsor_segments)
|
|
|
|
| 225 |
words, seg['start'], seg['end'])
|
| 226 |
|
| 227 |
else:
|
| 228 |
+
# logger.warning(f'No labels found for {video_id}')
|
| 229 |
# Not in database (all segments missed)
|
| 230 |
missed_segments = predictions
|
| 231 |
incorrect_segments = []
|
src/model.py
CHANGED
|
@@ -7,6 +7,7 @@ import pickle
|
|
| 7 |
import os
|
| 8 |
from dataclasses import dataclass, field
|
| 9 |
from typing import Optional
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
@dataclass
|
|
@@ -22,6 +23,9 @@ class ModelArguments:
|
|
| 22 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
| 23 |
}
|
| 24 |
)
|
|
|
|
|
|
|
|
|
|
| 25 |
# config_name: Optional[str] = field( # TODO remove?
|
| 26 |
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
|
| 27 |
# )
|
|
@@ -93,13 +97,15 @@ def get_classifier_vectorizer(classifier_args):
|
|
| 93 |
|
| 94 |
|
| 95 |
@lru_cache(maxsize=None)
|
| 96 |
-
def get_model_tokenizer(model_name_or_path, cache_dir=None):
|
| 97 |
if model_name_or_path is None:
|
| 98 |
raise ModelLoadError('Invalid model_name_or_path.')
|
| 99 |
|
| 100 |
# Load pretrained model and tokenizer
|
| 101 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 102 |
model_name_or_path, cache_dir=cache_dir)
|
|
|
|
|
|
|
| 103 |
|
| 104 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 105 |
model_name_or_path, max_length=model.config.d_model, cache_dir=cache_dir)
|
|
|
|
| 7 |
import os
|
| 8 |
from dataclasses import dataclass, field
|
| 9 |
from typing import Optional
|
| 10 |
+
import torch
|
| 11 |
|
| 12 |
|
| 13 |
@dataclass
|
|
|
|
| 23 |
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
|
| 24 |
}
|
| 25 |
)
|
| 26 |
+
no_cuda: bool = field(default=False, metadata={
|
| 27 |
+
'help': 'Do not use CUDA even when it is available'})
|
| 28 |
+
|
| 29 |
# config_name: Optional[str] = field( # TODO remove?
|
| 30 |
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
|
| 31 |
# )
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
@lru_cache(maxsize=None)
|
| 100 |
+
def get_model_tokenizer(model_name_or_path, cache_dir=None, no_cuda=False):
|
| 101 |
if model_name_or_path is None:
|
| 102 |
raise ModelLoadError('Invalid model_name_or_path.')
|
| 103 |
|
| 104 |
# Load pretrained model and tokenizer
|
| 105 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 106 |
model_name_or_path, cache_dir=cache_dir)
|
| 107 |
+
if not no_cuda:
|
| 108 |
+
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
| 109 |
|
| 110 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 111 |
model_name_or_path, max_length=model.config.d_model, cache_dir=cache_dir)
|
src/predict.py
CHANGED
|
@@ -25,6 +25,7 @@ import preprocess
|
|
| 25 |
from errors import PredictionException, TranscriptError, ModelLoadError, ClassifierLoadError
|
| 26 |
from model import ModelArguments, get_classifier_vectorizer, get_model_tokenizer
|
| 27 |
|
|
|
|
| 28 |
|
| 29 |
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
|
| 30 |
INNERTUBE_KEY = base64.b64decode(
|
|
@@ -114,6 +115,8 @@ class InferenceArguments:
|
|
| 114 |
output_as_json: bool = field(default=False, metadata={
|
| 115 |
'help': 'Output evaluations as JSON'})
|
| 116 |
|
|
|
|
|
|
|
| 117 |
def __post_init__(self):
|
| 118 |
# Try to load model from latest checkpoint
|
| 119 |
if self.model_path is None:
|
|
@@ -137,8 +140,8 @@ class InferenceArguments:
|
|
| 137 |
|
| 138 |
channel_video_ids = list(itertools.islice(get_all_channel_vids(
|
| 139 |
self.channel_id), start, end))
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
self.video_ids += channel_video_ids
|
| 144 |
|
|
@@ -300,8 +303,9 @@ CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
|
|
| 300 |
|
| 301 |
def predict_sponsor_text(text, model, tokenizer):
|
| 302 |
"""Given a body of text, predict the words which are part of the sponsor"""
|
|
|
|
| 303 |
input_ids = tokenizer(
|
| 304 |
-
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids
|
| 305 |
|
| 306 |
max_out_len = round(min(
|
| 307 |
max(
|
|
@@ -389,7 +393,7 @@ def segments_to_predictions(segments, model, tokenizer):
|
|
| 389 |
|
| 390 |
def main():
|
| 391 |
# Test on unseen data
|
| 392 |
-
logging.getLogger().setLevel(logging.DEBUG)
|
| 393 |
|
| 394 |
hf_parser = HfArgumentParser((
|
| 395 |
PredictArguments,
|
|
@@ -399,11 +403,12 @@ def main():
|
|
| 399 |
predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
|
| 400 |
|
| 401 |
if not predict_args.video_ids:
|
| 402 |
-
|
|
|
|
| 403 |
return
|
| 404 |
|
| 405 |
model, tokenizer = get_model_tokenizer(
|
| 406 |
-
predict_args.model_path, predict_args.cache_dir)
|
| 407 |
|
| 408 |
for video_id in predict_args.video_ids:
|
| 409 |
video_id = video_id.strip()
|
|
@@ -411,11 +416,11 @@ def main():
|
|
| 411 |
predictions = predict(video_id, model, tokenizer,
|
| 412 |
segmentation_args, classifier_args=classifier_args)
|
| 413 |
except TranscriptError:
|
| 414 |
-
|
| 415 |
continue
|
| 416 |
video_url = f'https://www.youtube.com/watch?v={video_id}'
|
| 417 |
if not predictions:
|
| 418 |
-
|
| 419 |
continue
|
| 420 |
|
| 421 |
# TODO use predict_args.output_as_json
|
|
|
|
| 25 |
from errors import PredictionException, TranscriptError, ModelLoadError, ClassifierLoadError
|
| 26 |
from model import ModelArguments, get_classifier_vectorizer, get_model_tokenizer
|
| 27 |
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
|
| 30 |
# Public innertube key (b64 encoded so that it is not incorrectly flagged)
|
| 31 |
INNERTUBE_KEY = base64.b64decode(
|
|
|
|
| 115 |
output_as_json: bool = field(default=False, metadata={
|
| 116 |
'help': 'Output evaluations as JSON'})
|
| 117 |
|
| 118 |
+
no_cuda: bool = ModelArguments.__dataclass_fields__['no_cuda']
|
| 119 |
+
|
| 120 |
def __post_init__(self):
|
| 121 |
# Try to load model from latest checkpoint
|
| 122 |
if self.model_path is None:
|
|
|
|
| 140 |
|
| 141 |
channel_video_ids = list(itertools.islice(get_all_channel_vids(
|
| 142 |
self.channel_id), start, end))
|
| 143 |
+
logger.info(
|
| 144 |
+
f'Found {len(channel_video_ids)} for channel {self.channel_id}')
|
| 145 |
|
| 146 |
self.video_ids += channel_video_ids
|
| 147 |
|
|
|
|
| 303 |
|
| 304 |
def predict_sponsor_text(text, model, tokenizer):
|
| 305 |
"""Given a body of text, predict the words which are part of the sponsor"""
|
| 306 |
+
model_device = next(model.parameters()).device
|
| 307 |
input_ids = tokenizer(
|
| 308 |
+
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(model_device)
|
| 309 |
|
| 310 |
max_out_len = round(min(
|
| 311 |
max(
|
|
|
|
| 393 |
|
| 394 |
def main():
|
| 395 |
# Test on unseen data
|
| 396 |
+
# logging.getLogger().setLevel(logging.DEBUG)
|
| 397 |
|
| 398 |
hf_parser = HfArgumentParser((
|
| 399 |
PredictArguments,
|
|
|
|
| 403 |
predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
|
| 404 |
|
| 405 |
if not predict_args.video_ids:
|
| 406 |
+
logger.error(
|
| 407 |
+
'No video IDs supplied. Use `--video_id`, `--video_ids`, or `--channel_id`.')
|
| 408 |
return
|
| 409 |
|
| 410 |
model, tokenizer = get_model_tokenizer(
|
| 411 |
+
predict_args.model_path, predict_args.cache_dir, predict_args.no_cuda)
|
| 412 |
|
| 413 |
for video_id in predict_args.video_ids:
|
| 414 |
video_id = video_id.strip()
|
|
|
|
| 416 |
predictions = predict(video_id, model, tokenizer,
|
| 417 |
segmentation_args, classifier_args=classifier_args)
|
| 418 |
except TranscriptError:
|
| 419 |
+
logger.warning('No transcript available for', video_id, end='\n\n')
|
| 420 |
continue
|
| 421 |
video_url = f'https://www.youtube.com/watch?v={video_id}'
|
| 422 |
if not predictions:
|
| 423 |
+
logger.info('No predictions found for', video_url, end='\n\n')
|
| 424 |
continue
|
| 425 |
|
| 426 |
# TODO use predict_args.output_as_json
|
src/preprocess.py
CHANGED
|
@@ -558,6 +558,8 @@ def main():
|
|
| 558 |
@lru_cache(maxsize=1)
|
| 559 |
def read_db():
|
| 560 |
if not preprocess_args.overwrite and os.path.exists(processed_db_path):
|
|
|
|
|
|
|
| 561 |
with open(processed_db_path) as fp:
|
| 562 |
return json.load(fp)
|
| 563 |
print('Processing raw database')
|
|
@@ -790,7 +792,8 @@ def main():
|
|
| 790 |
# , max_videos, max_segments
|
| 791 |
|
| 792 |
from model import get_model_tokenizer
|
| 793 |
-
model, tokenizer = get_model_tokenizer(
|
|
|
|
| 794 |
|
| 795 |
# TODO
|
| 796 |
# count_videos = 0
|
|
|
|
| 558 |
@lru_cache(maxsize=1)
|
| 559 |
def read_db():
|
| 560 |
if not preprocess_args.overwrite and os.path.exists(processed_db_path):
|
| 561 |
+
print(
|
| 562 |
+
'Using cached processed database (use `--overwrite` to avoid this behaviour).')
|
| 563 |
with open(processed_db_path) as fp:
|
| 564 |
return json.load(fp)
|
| 565 |
print('Processing raw database')
|
|
|
|
| 792 |
# , max_videos, max_segments
|
| 793 |
|
| 794 |
from model import get_model_tokenizer
|
| 795 |
+
model, tokenizer = get_model_tokenizer(
|
| 796 |
+
model_args.model_name_or_path, model_args.cache_dir, model_args.no_cuda)
|
| 797 |
|
| 798 |
# TODO
|
| 799 |
# count_videos = 0
|
src/train.py
CHANGED
|
@@ -297,7 +297,7 @@ def main():
|
|
| 297 |
|
| 298 |
from model import get_model_tokenizer
|
| 299 |
model, tokenizer = get_model_tokenizer(
|
| 300 |
-
model_args.model_name_or_path, model_args.cache_dir)
|
| 301 |
# max_tokenizer_length = model.config.d_model
|
| 302 |
|
| 303 |
# Preprocessing the datasets.
|
|
|
|
| 297 |
|
| 298 |
from model import get_model_tokenizer
|
| 299 |
model, tokenizer = get_model_tokenizer(
|
| 300 |
+
model_args.model_name_or_path, model_args.cache_dir, model_args.no_cuda)
|
| 301 |
# max_tokenizer_length = model.config.d_model
|
| 302 |
|
| 303 |
# Preprocessing the datasets.
|